scholarly journals Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices

2016 ◽  
Vol 2 (9) ◽  
pp. e1600485 ◽  
Author(s):  
Li He ◽  
Huan Li ◽  
Mo Li

Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon’s polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry.

2015 ◽  
Vol 112 (43) ◽  
pp. 13190-13194 ◽  
Author(s):  
Amaury Hayat ◽  
J. P. Balthasar Mueller ◽  
Federico Capasso

The transverse component of the spin angular momentum of evanescent waves gives rise to lateral optical forces on chiral particles, which have the unusual property of acting in a direction in which there is neither a field gradient nor wave propagation. Because their direction and strength depends on the chiral polarizability of the particle, they act as chirality-sorting and may offer a mechanism for passive chirality spectroscopy. The absolute strength of the forces also substantially exceeds that of other recently predicted sideways optical forces.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rfaqat Ali ◽  
Rafael S. Dutra ◽  
Felipe A. Pinheiro ◽  
Felipe S. S. Rosa ◽  
Paulo A. Maia Neto

Abstract We report for the first time the theory of optical tweezers of spherical dielectric particles embedded in a chiral medium. We develop a partial-wave (Mie) expansion to calculate the optical force acting on a dielectric microsphere illuminated by a circularly-polarized, highly focused laser beam. When choosing a polarization with the same handedness of the medium, the axial trap stability is improved, thus allowing for tweezing of high-refractive-index particles. When the particle is displaced off-axis by an external force, its equilibrium position is rotated around the optical axis by the mechanical effect of an optical torque. Both the optical torque and the angle of rotation are greatly enhanced in the presence of a chiral host medium when considering radii a few times larger than the wavelength. In this range, the angle of rotation depends strongly on the microsphere radius and the chirality parameter of the host medium, opening the way for a quantitative characterization of both parameters. Measurable angles are predicted even in the case of naturally occurring chiral solutes, allowing for a novel all-optical method to locally probe the chiral response at the nanoscale.


Author(s):  
Aaron Yevick ◽  
Daniel J. Evans ◽  
David G. Grier

The theory of photokinetic effects expresses the forces and torques exerted by a beam of light in terms of experimentally accessible amplitude and phase profiles. We use this formalism to develop an intuitive explanation for the performance of optical tweezers operating in the Rayleigh regime, including effects arising from the influence of light’s angular momentum. First-order dipole contributions reveal how a focused beam can trap small objects, and what features limit the trap’s stability. The first-order force separates naturally into a conservative intensity-gradient term that forms a trap and a non-conservative solenoidal term that drives the system out of thermodynamic equilibrium. Neither term depends on the light’s polarization; light’s spin angular momentum plays no role at dipole order. Polarization-dependent effects, such as trap-strength anisotropy and spin-curl forces, are captured by the second-order dipole-interference contribution to the photokinetic force. The photokinetic expansion thus illuminates how light’s angular momentum can be harnessed for optical micromanipulation, even in the most basic optical traps. This article is part of the themed issue ‘Optical orbital angular momentum’.


Author(s):  
T. Kimura

This chapter discusses the spin-transfer effect, which is described as the transfer of the spin angular momentum between the conduction electrons and the magnetization of the ferromagnet that occurs due to the conservation of the spin angular momentum. L. Berger, who introduced the concept in 1984, considered the exchange interaction between the conduction electron and the localized magnetic moment, and predicted that a magnetic domain wall can be moved by flowing the spin current. The spin-transfer effect was brought into the limelight by the progress in microfabrication techniques and the discovery of the giant magnetoresistance effect in magnetic multilayers. Berger, at the same time, separately studied the spin-transfer torque in a system similar to Slonczewski’s magnetic multilayered system and predicted spontaneous magnetization precession.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Liuhao Zhu ◽  
Miaomiao Tang ◽  
Hehe Li ◽  
Yuping Tai ◽  
Xinzhong Li

Abstract Generally, an optical vortex lattice (OVL) is generated via the superposition of two specific vortex beams. Thus far, OVL has been successfully employed to trap atoms via the dark cores. The topological charge (TC) on each optical vortex (OV) in the lattice is only ±1. Consequently, the orbital angular momentum (OAM) on the lattice is ignored. To expand the potential applications, it is necessary to rediscover and exploit OAM. Here we propose a novel high-order OVL (HO-OVL) that combines the phase multiplication and the arbitrary mode-controllable techniques. TC on each OV in the lattice is up to 51, which generates sufficient OAM to manipulate microparticles. Thereafter, the entire lattice can be modulated to desirable arbitrary modes. Finally, yeast cells are trapped and rotated by the proposed HO-OVL. To the best of our knowledge, this is the first realization of the complex motion of microparticles via OVL. Thus, this work successfully exploits OAM on OVL, thereby revealing potential applications in particle manipulation and optical tweezers.


2003 ◽  
Vol 125 (4) ◽  
pp. 723-730
Author(s):  
H. Nilsson ◽  
L. Davidson

This work derives and applies a method for the investigation of numerical accuracy in computational fluid dynamics. The method is used to investigate discretization errors in computations of swirling flow in water turbines. The work focuses on the conservation of a subset of the angular momentum equations that is particularly important to swirling flow in water turbines. The method is based on the fact that the discretized angular momentum equations are not necessarily conserved when the discretized linear momentum equations are solved. However, the method can be used to investigate the effect of discretization on any equation that should be conserved in the correct solution, and the application is not limited to water turbines. Computations made for two Kaplan water turbine runners and a simplified geometry of one of the Kaplan runner ducts are investigated to highlight the general and simple applicability of the method.


Icarus ◽  
1997 ◽  
Vol 127 (1) ◽  
pp. 65-92 ◽  
Author(s):  
Jack J. Lissauer ◽  
Alice F. Berman ◽  
Yuval Greenzweig ◽  
David M. Kary

2005 ◽  
Vol 14 (03) ◽  
pp. 375-382 ◽  
Author(s):  
CHIH-LANG LIN ◽  
IRÈNE WANG ◽  
MARC PIERRE ◽  
ISABELLE COLOMBIER ◽  
CHANTAL ANDRAUD ◽  
...  

We study the rotational motion of objects trapped in a focused laser beam (optical tweezers). Micrometer-sized flat slabs are fabricated using two-photon photopolymerization. These objects, trapped by linearly-polarized light, tend to align parallel to the polarization plane. This alignment effect is attributed to the polarization anisotropy resulting from the object shape and we present a simple electromagnetic approach to estimate the resulting optical torque. Micro-rotors of different sizes are studied experimentally. We characterize the behavior of micro-objects when the light polarization is rotated at constant speed. Our theoretical approach gives a good prediction of how the size of micro-objects affects their rotation efficiency.


Sign in / Sign up

Export Citation Format

Share Document