scholarly journals Photokinetic analysis of the forces and torques exerted by optical tweezers carrying angular momentum

Author(s):  
Aaron Yevick ◽  
Daniel J. Evans ◽  
David G. Grier

The theory of photokinetic effects expresses the forces and torques exerted by a beam of light in terms of experimentally accessible amplitude and phase profiles. We use this formalism to develop an intuitive explanation for the performance of optical tweezers operating in the Rayleigh regime, including effects arising from the influence of light’s angular momentum. First-order dipole contributions reveal how a focused beam can trap small objects, and what features limit the trap’s stability. The first-order force separates naturally into a conservative intensity-gradient term that forms a trap and a non-conservative solenoidal term that drives the system out of thermodynamic equilibrium. Neither term depends on the light’s polarization; light’s spin angular momentum plays no role at dipole order. Polarization-dependent effects, such as trap-strength anisotropy and spin-curl forces, are captured by the second-order dipole-interference contribution to the photokinetic force. The photokinetic expansion thus illuminates how light’s angular momentum can be harnessed for optical micromanipulation, even in the most basic optical traps. This article is part of the themed issue ‘Optical orbital angular momentum’.

Author(s):  
H Mushfique ◽  
J Leach ◽  
R Di Leonardo ◽  
M J Padgett ◽  
J M Cooper

This paper describes techniques for generating and measuring fluid flow in microfluidic devices. The first technique is for the multi-point measurement of fluid flow in microscopic geometries. The flow sensing method uses an array of optically trapped microprobe sensors to map out the fluid flow. The optical traps are alternately turned on and off such that the probe particles are displaced by the flow of the surrounding fluid and then retrapped. The particles' displacements are monitored by digital video microscopy and directly converted into velocity field values. The second is a method for generating flow within a microfluidic channel using an optically driven pump. The optically driven pump consists of two counter-rotating birefringent vaterite particles trapped within a microfluidic channel and driven using optical tweezers. The transfer of spin angular momentum from a circularly polarized laser beam causes the particles to rotate at up to 10 Hz. The pump is shown to be able to displace fluid in microchannels, with flow rates of up to 200 m−3 s−1 (200 fL s−1). In addition a flow sensing method, based upon the technique mentioned above, is incorporated into the system in order to map the magnitude and direction of fluid flow within the channel.


2016 ◽  
Vol 2 (9) ◽  
pp. e1600485 ◽  
Author(s):  
Li He ◽  
Huan Li ◽  
Mo Li

Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon’s polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry.


Author(s):  
T. Kimura

This chapter discusses the spin-transfer effect, which is described as the transfer of the spin angular momentum between the conduction electrons and the magnetization of the ferromagnet that occurs due to the conservation of the spin angular momentum. L. Berger, who introduced the concept in 1984, considered the exchange interaction between the conduction electron and the localized magnetic moment, and predicted that a magnetic domain wall can be moved by flowing the spin current. The spin-transfer effect was brought into the limelight by the progress in microfabrication techniques and the discovery of the giant magnetoresistance effect in magnetic multilayers. Berger, at the same time, separately studied the spin-transfer torque in a system similar to Slonczewski’s magnetic multilayered system and predicted spontaneous magnetization precession.


1975 ◽  
Vol 30 (5) ◽  
pp. 656-671
Author(s):  
W. Bauhoff

AbstractThe mass eigenvalue equation for mesons in nonlinear spinor theory is derived by functional methods. In second order it leads to a spinorial Bethe-Salpeter equation. This is solved by a variational method with high precision for arbitrary angular momentum. The results for scalar mesons show a shift of the first order results, obtained earlier. The agreement with experiment is improved thereby. An excited state corresponding to the η' is found. A calculation of a Regge trajectory is included,too.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Liuhao Zhu ◽  
Miaomiao Tang ◽  
Hehe Li ◽  
Yuping Tai ◽  
Xinzhong Li

Abstract Generally, an optical vortex lattice (OVL) is generated via the superposition of two specific vortex beams. Thus far, OVL has been successfully employed to trap atoms via the dark cores. The topological charge (TC) on each optical vortex (OV) in the lattice is only ±1. Consequently, the orbital angular momentum (OAM) on the lattice is ignored. To expand the potential applications, it is necessary to rediscover and exploit OAM. Here we propose a novel high-order OVL (HO-OVL) that combines the phase multiplication and the arbitrary mode-controllable techniques. TC on each OV in the lattice is up to 51, which generates sufficient OAM to manipulate microparticles. Thereafter, the entire lattice can be modulated to desirable arbitrary modes. Finally, yeast cells are trapped and rotated by the proposed HO-OVL. To the best of our knowledge, this is the first realization of the complex motion of microparticles via OVL. Thus, this work successfully exploits OAM on OVL, thereby revealing potential applications in particle manipulation and optical tweezers.


Icarus ◽  
1997 ◽  
Vol 127 (1) ◽  
pp. 65-92 ◽  
Author(s):  
Jack J. Lissauer ◽  
Alice F. Berman ◽  
Yuval Greenzweig ◽  
David M. Kary

1965 ◽  
Vol 20 (12) ◽  
pp. 1676-1681 ◽  
Author(s):  
D. Sutter ◽  
H. Dreizler ◽  
H. D. Rudolph

The microwave spectra of CD3 —S —S —CD3 and CH3 —S —S—CH3 have been measured in the frequency range from 5.5 to 34 kmc/sec. From the six rotational constants an r0-structure has been calculated. STARK-effect measurements have been made for the 101 —110 and 202—211 rotational transitions of CH3—S—S—CH3. The dipole moment was calculated to be (1.985±0.01) Debye. An approximate value for the barrier to internal rotation of the two methyl tops is given, V3= (1.6±0.1) kcal. The calculation has been based on triplet splittings of the rotational lines using second order perturbation theory in the torsional wavefunctions and neglecting first order and cross terms in angular momentum.


Sign in / Sign up

Export Citation Format

Share Document