scholarly journals Voltage control of unidirectional anisotropy in ferromagnet-multiferroic system

2018 ◽  
Vol 4 (11) ◽  
pp. eaat4229 ◽  
Author(s):  
Sasikanth Manipatruni ◽  
Dmitri E. Nikonov ◽  
Chia-Ching Lin ◽  
Bhagwati Prasad ◽  
Yen-Lin Huang ◽  
...  

Demonstration of ultralow energy switching mechanisms is imperative for continued improvements in computing devices. Ferroelectric (FE) and multiferroic (MF) order and their manipulation promise an ideal combination of state variables to reach attojoule range for logic and memory (i.e., ~30× lower switching energy than nanoelectronics). In BiFeO3(BFO), the coupling between the antiferromagnetic (AFM) and FE order is robust at room temperature, scalable in voltage, stabilized by the FE order, and can be integrated into a fabrication process for a beyond-CMOS (complementary metal-oxide semiconductor) era. The presence of the AFM order and a canted magnetic moment in this system causes exchange interaction with a ferromagnet such as Co0.9Fe0.1or La0.7Sr0.3MnO3. Previous research has shown that exchange coupling (uniaxial anisotropy) can be controlled with an electric field. However, voltage modulation of unidirectional anisotropy, which is preferred for logic and memory technologies, has not yet been demonstrated. Here, we present evidence for electric field control of exchange bias of laterally scaled spin valves that is exchange coupled to BFO at room temperature. We show that the exchange bias in this bilayer is robust, electrically controlled, and reversible. We anticipate that magnetoelectricity at these scaled dimensions provides a powerful pathway for computing beyond modern nanoelectronics by enabling a new class of nonvolatile, ultralow energy computing elements.

SPIN ◽  
2012 ◽  
Vol 02 (03) ◽  
pp. 1240006 ◽  
Author(s):  
PRASAD SHABADI ◽  
SANKARA NARAYANAN RAJAPANDIAN ◽  
SANTOSH KHASANVIS ◽  
CSABA ANDRAS MORITZ

Over the past few years, several novel nanoscale computing concepts have been proposed as potential post-complementary metal oxide semiconductor (CMOS) computing fabrics. In these, key focus is on inventing a faster and lower power alternative to conventional metal oxide semiconductor field effect transators. Instead, we propose a fundamental shift in mindset towards more functional building blocks, replacing simple switches with more sophisticated information encoding and computing based on alternate state variables to achieve a significantly more efficient and compact logic. Specifically, we propose wave computation enabled by magnetic spin wave interactions called as spin wave functions (SPWFs). In SPWFs, computation is based on wave interference and information can be encoded in a wave's phase, amplitude and frequency. In this paper, we provide an update on key fabric concepts and design aspects. Our analysis shows that circuit design choices can have a significant impact on overall fabric/device capabilities required and vice versa. Thereby, we adapt an integrated fabric-circuit exploration methodology. Control schemes for wave streaming and synchronization are also discussed with several SPWF circuit topologies. Our estimations show that significant area and power benefits can be expected for SPWF-based designs versus CMOS. In particular, for a 1-bit adder up to 40X area benefit and up to 304X power consumption reduction may be possible with SPWF-based implementation versus 45 nm CMOS.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 994 ◽  
Author(s):  
Chun-Lung Lien ◽  
Chiun-Jye Yuan

An electrochemical sensing chip with an 8 × 8 array of titanium nitride three-dimensional nano-electrodes (TiN 3D-NEA) was designed and fabricated via a standard integrated complementary metal oxide semiconductor process. Each nano-electrode in 3D-NEA exhibited a pole-like structure with a radius of 100 nm and a height of 35 nm. The numeric simulation showed that the nano-electrode with a radius of around 100 nm exhibited a more uniformly distributed electric field and a much higher electric field magnitude compared to that of the microelectrode. Cyclic voltammetry study with Ru(NH3)63+ also revealed that the TiN 3D-NEA exhibited a much higher current density than that obtained from the microelectrode by two orders of magnitude. Further studies showed that the electrocatalytical reduction of hydrogen peroxide (H2O2) could occur on a TiN 3D-NEA-based sensing chip with a high sensitivity of 667.2 mA⋅mM−1⋅cm−2. The linear detection range for H2O2 was between 0.1 μM and 5 mM with a lowest detection limit of 0.1 μM. These results indicated that the fabricated TiN 3D-NEA exhibited high catalytic activity and sensitivity to H2O2 and could be a promising sensor for H2O2 measurement.


1987 ◽  
Vol 65 (8) ◽  
pp. 991-994
Author(s):  
Ljubisa Ristic ◽  
Henry P. Baltes ◽  
Igor Filanovsky ◽  
David R. Briglio ◽  
Tom Smy ◽  
...  

An investigation of a novel lateral transistor structure fabricated in standard 4 μm complementary metal oxide semiconductor technology without any additional processing steps is presented. Inherent in the structure is the potential of modulating the lateral electric field in the neutral base region. An additional characteristic of this structure is the reduced bottom surface of the emitter, which diminishes the parasitic action of vertically injected carriers. The results show that because of the lateral electric field, the common-emitter static current gain at high currents can be increased by at least an order of magnitude.


Sign in / Sign up

Export Citation Format

Share Document