scholarly journals Full-field imaging of thermal and acoustic dynamics in an individual nanostructure using tabletop high harmonic beams

2018 ◽  
Vol 4 (10) ◽  
pp. eaau4295 ◽  
Author(s):  
Robert M. Karl ◽  
Giulia F. Mancini ◽  
Joshua L. Knobloch ◽  
Travis D. Frazer ◽  
Jorge N. Hernandez-Charpak ◽  
...  

Imaging charge, spin, and energy flow in materials is a current grand challenge that is relevant to a host of nanoenhanced systems, including thermoelectric, photovoltaic, electronic, and spin devices. Ultrafast coherent x-ray sources enable functional imaging on nanometer length and femtosecond timescales particularly when combined with advances in coherent imaging techniques. Here, we combine ptychographic coherent diffractive imaging with an extreme ultraviolet high harmonic light source to directly visualize the complex thermal and acoustic response of an individual nanoscale antenna after impulsive heating by a femtosecond laser. We directly image the deformations induced in both the nickel tapered nanoantenna and the silicon substrate and see the lowest-order generalized Lamb wave that is partially confined to a uniform nanoantenna. The resolution achieved—sub–100 nm transverse and 0.5-Å axial spatial resolution, combined with ≈10-fs temporal resolution—represents a significant advance in full-field dynamic imaging capabilities. The tapered nanoantenna is sufficiently complex that a full simulation of the dynamic response would require enormous computational power. We therefore use our data to benchmark approximate models and achieve excellent agreement between theory and experiment. In the future, this work will enable three-dimensional functional imaging of opaque materials and nanostructures that are sufficiently complex that their functional properties cannot be predicted.

2019 ◽  
Vol 56 (6) ◽  
pp. 885-892 ◽  
Author(s):  
Louis King ◽  
Abdelmalek Bouazza ◽  
Anton Maksimenko ◽  
Will P. Gates ◽  
Stephen Dubsky

The measurement of displacement fields by nondestructive imaging techniques opens up the potential to study the pre-failure mechanisms of a wide range of geotechnical problems within physical models. With the advancement of imaging technologies, it has become possible to achieve high-resolution three-dimensional computed tomography volumes of relatively large samples, which may have previously resulted in excessively long scan times or significant imaging artefacts. Imaging of small-scale model piled embankments (142 mm diameter) comprising sand was undertaken using the imaging and medical beamline at the Australian Synchrotron. The monochromatic X-ray beam produced high-resolution reconstructed volumes with a fine texture due to the size and mineralogy of the sand grains as well as the phase contrast enhancement achieved by the monochromatic X-ray beam. The reconstructed volumes were well suited to the application of digital volume correlation, which utilizes cross-correlation techniques to estimate three-dimensional full-field displacement vectors. The output provides insight into the strain localizations that develop within piled embankments and an example of how advanced imaging techniques can be utilized to study the kinematics of physical models.


2019 ◽  
Vol 205 ◽  
pp. 04005
Author(s):  
Charles Bevis ◽  
Karl Jr. Robert ◽  
Giulia F. Mancini ◽  
Dennis Gardner ◽  
Elisabeth Shanblatt ◽  
...  

We demonstrate the first stroboscopic full-field EUV nanoscope using high harmonics. We image the propagation of thermal and surface acoustic waves in nickel with 80nm transverse, 0.5 Å axial, and 10 fs resolution.


2017 ◽  
Vol 6 (6) ◽  
Author(s):  
Patrick Helfenstein ◽  
Iacopo Mochi ◽  
Rajendran Rajeev ◽  
Sara Fernandez ◽  
Yasin Ekinci

AbstractThe paradigm shift of the semiconductor industry moving from deep ultraviolet to extreme ultraviolet lithography (EUVL) brought about new challenges in the fabrication of illumination and projection optics, which constitute one of the core sources of cost of ownership for many of the metrology tools needed in the lithography process. For this reason, lensless imaging techniques based on coherent diffractive imaging started to raise interest in the EUVL community. This paper presents an overview of currently on-going research endeavors that use a number of methods based on lensless imaging with coherent light.


2017 ◽  
Vol 6 (6) ◽  
Author(s):  
Jan Bußmann ◽  
Michal Odstrčil ◽  
Yusuke Teramoto ◽  
Larissa Juschkin

AbstractWe report on high-resolution lens-less imaging experiments based on ptychographic scanning coherent diffractive imaging (CDI) method employing compact plasma sources developed for extreme ultraviolet (EUV) lithography applications. Two kinds of discharge sources were used in our experiments: a hollow-cathode-triggered pinch plasma source operated with oxygen and for the first time a laser-assisted discharge EUV source with a liquid tin target. Ptychographic reconstructions of different samples were achieved by applying constraint relaxation to the algorithm. Our ptychography algorithms can handle low spatial coherence and broadband illumination as well as compensate for the residual background due to plasma radiation in the visible spectral range. Image resolution down to 100 nm is demonstrated even for sparse objects, and it is limited presently by the sample structure contrast and the available coherent photon flux. We could extract material properties by the reconstruction of the complex exit-wave field, gaining additional information compared to electron microscopy or CDI with longer-wavelength high harmonic laser sources. Our results show that compact plasma-based EUV light sources of only partial spatial and temporal coherence can be effectively used for lens-less imaging applications. The reported methods may be applied in combination with reflectometry and scatterometry for high-resolution EUV metrology.


2007 ◽  
Vol 25 (8) ◽  
pp. 987-995 ◽  
Author(s):  
Joycelyn L. Speight ◽  
Mack Roach

Radiation therapy is an active modality in the management of local and regional prostate cancer, but can be curative only if all existing disease is encompassed within the treatment portal. In addition to the ability to deliver sufficient radiation dose, accurate targeting is critical to achieve better treatment outcomes. Failure to accommodate daily variations in setup and organ motion potentially limits the efficacy of sophisticated conformal techniques (three-dimensional conformal radiotherapy and intensity-modulated radiotherapy). Increased use of various online and real-time imaging techniques is an important step toward enhancing treatment accuracy. The incorporation of functional imaging techniques into treatment planning is another important step. The addition of biologic and metabolic information regarding the location and extent of disease combined with real-time online imaging will allow us to better determine where, how, and with what to treat appropriate targets and improve cure rates.


2013 ◽  
Vol 15 (9) ◽  
pp. 094009 ◽  
Author(s):  
A D Parsons ◽  
R T Chapman ◽  
P Baksh ◽  
B Mills ◽  
S Bajt ◽  
...  

Author(s):  
Eva Klimešová ◽  
Olena Kulyk ◽  
Ziaul Hoque ◽  
Andreas Hult Roos ◽  
Krishna P. Khakurel ◽  
...  

AbstractWe report on the status of a users’ end-station, MAC: a Multipurpose station for Atomic, molecular and optical sciences and Coherent diffractive imaging, designed for studies of structure and dynamics of matter in the femtosecond time-domain. MAC is located in the E1 experimental hall on the high harmonic generation (HHG) beamline of the ELI Beamlines facility. The extreme ultraviolet beam from the HHG beamline can be used at the MAC end-station together with a synchronized pump beam (which will cover the NIR/Vis/UV or THz range) for time-resolved experiments on different samples. Sample delivery systems at the MAC end-station include a molecular beam, a source for pure or doped clusters, ultrathin cylindrical or flat liquid jets, and focused beams of substrate-free nanoparticles produced by an electrospray or a gas dynamic virtual nozzle combined with an aerodynamic lens stack. We further present the available detectors: electron/ion time-of-flight and velocity map imaging spectrometers and an X-ray camera, and discuss future upgrades: a magnetic bottle electron spectrometer, production of doped nanodroplets and the planned developments of beam capabilities at the MAC end-station.


2018 ◽  
Vol 28 (2) ◽  
pp. 97
Author(s):  
Khuong Ba Dinh ◽  
Khoa Anh Tran ◽  
Peter Hannaford ◽  
Lap Van Dao

Coherent diffractive imaging (CDI) is a lensless microscopy technique in which the structure of a specimen of interest is probed using a coherent short-wavelength light source. CDI has been widely used in nanotechnology and structural biology to capture high resolution images of non-crystalline objects. In this paper, we review the theoretical and experimental aspects of coherent diffractive imaging using a focused narrow-bandwidth table-top high harmonic source. The review begins with an outline of generation and characterization of the high harmonic source. Theoretical description of coherent diffractive imaging technique is then summarized. The review concludes with our recent results in imaging using a single harmonic beam selected by employing XUV focusing mirrors. These achievements provide a promising technique for the non-crystallographic structural determination of membrane proteins using a table-top extreme ultraviolet source.


2019 ◽  
Vol 205 ◽  
pp. 02004
Author(s):  
Matthijs Jansen ◽  
Anne de Beurs ◽  
Kevin Liu ◽  
Kjeld Eikema ◽  
Stefan Witte

Using a pair of phase-locked high-harmonic generation sources, we demonstrate Fourier transform interferometry at extreme-ultraviolet (EUV) wavelengths between 17 and 55 nm. This is made possible by the adaptation of a birefringence-based ultrastable interferometer for infrared femtosecond pulses. Since we measure the interference with an EUV-sensitive CCD camera, this enables a wide range of spatially and spectrally resolved measurements at extreme ultraviolet wavelengths. We demonstrate the capabilities of this technique by performing wavelength-resolved high-resolution coherent diffractive imaging and by measuring the spatially resolved spectral absorption of a thin structured titanium film.


Author(s):  
Jerome J. Paulin

Within the past decade it has become apparent that HVEM offers the biologist a means to explore the three-dimensional structure of cells and/or organelles. Stereo-imaging of thick sections (e.g. 0.25-10 μm) not only reveals anatomical features of cellular components, but also reduces errors of interpretation associated with overlap of structures seen in thick sections. Concomitant with stereo-imaging techniques conventional serial Sectioning methods developed with thin sections have been adopted to serial thick sections (≥ 0.25 μm). Three-dimensional reconstructions of the chondriome of several species of trypanosomatid flagellates have been made from tracings of mitochondrial profiles on cellulose acetate sheets. The sheets are flooded with acetone, gluing them together, and the model sawed from the composite and redrawn.The extensive mitochondrial reticulum can be seen in consecutive thick sections of (0.25 μm thick) Crithidia fasciculata (Figs. 1-2). Profiles of the mitochondrion are distinguishable from the anterior apex of the cell (small arrow, Fig. 1) to the posterior pole (small arrow, Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document