scholarly journals Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown

2020 ◽  
Vol 6 (26) ◽  
pp. eaaz0495 ◽  
Author(s):  
Gozde S. Demirer ◽  
Huan Zhang ◽  
Natalie S. Goh ◽  
Rebecca L. Pinals ◽  
Roger Chang ◽  
...  

Posttranscriptional gene silencing (PTGS) is a powerful tool to understand and control plant metabolic pathways, which is central to plant biotechnology. PTGS is commonly accomplished through delivery of small interfering RNA (siRNA) into cells. Standard plant siRNA delivery methods (Agrobacterium and viruses) involve coding siRNA into DNA vectors and are only tractable for certain plant species. Here, we develop a nanotube-based platform for direct delivery of siRNA and show high silencing efficiency in intact plant cells. We demonstrate that nanotubes successfully deliver siRNA and silence endogenous genes, owing to effective intracellular delivery and nanotube-induced protection of siRNA from nuclease degradation. This study establishes that nanotubes could enable a myriad of plant biotechnology applications that rely on RNA delivery to intact cells.

2021 ◽  
Author(s):  
Huan Zhang ◽  
Yuhong Cao ◽  
Dawei Xu ◽  
Natalie S. Goh ◽  
Gozde S. Demirer ◽  
...  

AbstractRNA interference (RNAi), which involves the delivery of small interfering RNA molecules (siRNA), has been used to validate target genes in plants, to understand and control cellular metabolic pathways, and as a ‘green’ alternative for crop pest tolerance. Conventional siRNA delivery methods such as viruses and Agrobacterium-mediated delivery exhibit limitations in host plant species range and their use can result in uncontrolled DNA integration into the plant host genome. Here, we synthesize polyethyleneimine functionalized gold nanoclusters (PEI-AuNCs) to mediate siRNA delivery into intact plant cells and show these constructs enable efficient gene knockdown. We demonstrate that functionalized AuNCs protect siRNA from RNase degradation and are small enough (~2 nm) to bypass the plant cell wall which exhibits a size exclusion limit of 5-20 nm. These AuNCs in turn enable up to 76.5 ± 5.9% GFP mRNA knockdown efficiency with no cellular toxicity. Our data suggest this simple and biocompatible platform for passive delivery of siRNA into intact plant cells could have broad applications in plant biotechnology.


2019 ◽  
Author(s):  
Gozde S. Demirer ◽  
Huan Zhang ◽  
Natalie S. Goh ◽  
Roger Chang ◽  
Markita P. Landry

AbstractPost-transcriptional gene silencing (PTGS) is a powerful tool to understand and control plant metabolic pathways, which is central to plant biotechnology. PTGS is commonly accomplished through delivery of small interfering RNA (siRNA) into cells. While siRNA delivery has been optimized for mammalian systems, it remains a significant challenge for plants due to the plant cell wall. Standard plant siRNA delivery methods (Agrobacteriumand viruses) involve coding siRNA into DNA vectors, and are only tractable for certain plant species. Herein, we develop a nanotube-based platform for direct delivery of siRNA, and show high silencing efficiency in intact plant cells. We demonstrate that nanotubes successfully deliver siRNA and silence endogenous genes owing to effective intracellular delivery and nanotube-induced protection of siRNA from nuclease degradation. This study establishes that nanotubes, which are below the size exclusion limit of the plant cell wall, could enable a myriad of plant biotechnology applications that rely on RNA delivery.


2021 ◽  
Author(s):  
Huan Zhang ◽  
Natalie S. Goh ◽  
Jeffrey Wang ◽  
Gozde S. Demirer ◽  
Salwan Butrus ◽  
...  

AbstractRapidly growing interest in nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influences transport in plants and use of their cargoes, limiting development and deployment of nanotechnology in plant systems. Here, we employ non-biolistically delivered DNA-modified gold nanoparticles (AuNP) spanning various sizes (5 – 20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana (Nb) leaves. Generally, smaller AuNPs demonstrate more rapid, higher, and longer-lasting levels of association with plant cell walls compared to larger AuNPs. We observe internalization of rod-shaped but not spherical AuNPs into plant cells, yet surprisingly, 10 nm spherical AuNP functionalized with small-interfering RNA (siRNA) are most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery, and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious bio-cargo delivery for future developments in plant nanobiotechnology.


Nano Letters ◽  
2021 ◽  
Author(s):  
Huan Zhang ◽  
Yuhong Cao ◽  
Dawei Xu ◽  
Natalie S. Goh ◽  
Gozde S. Demirer ◽  
...  

2021 ◽  
pp. 1-16
Author(s):  
Heba Mahmoud Mohammad Abdel‐Aziz ◽  
Mohammed Nagib Abdel‐ghany Hasaneen

Author(s):  
L. K. Hapairai ◽  
K. Mysore ◽  
L. D. James ◽  
N. D. Scheel ◽  
J. S. Realey ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (73) ◽  
pp. 45059-45066
Author(s):  
Huan Peng ◽  
Weihong Ji ◽  
Ruichen Zhao ◽  
Zhiguo Lu ◽  
Jun Yang ◽  
...  

pH-sensitive zwitterionic polycarboxybetaine could complex siRNA in an acidic environment and could be used as a non-viral vector for safe siRNA delivery.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Pan He ◽  
Kyoji Hagiwara ◽  
Hui Chong ◽  
Hsiao-hua Yu ◽  
Yoshihiro Ito

Owing to its hydrophilicity, negative charge, small size, and labile degradation by endogenous nucleases, small interfering RNA (siRNA) delivery must be achieved by a carrier system. In this study, cationic copolymers composed of low-molecular-weight polyethylenimine and polythiophenes were synthesized and evaluated as novel self-tracking siRNA delivery vectors. The concept underlying the design of these copolymers is that hydrophobicity and rigidity of polythiophenes should enhance the transport of siRNA across the cell membrane and endosomal membrane. A gel retardation assay showed that the nanosized complexes formed between the copolymers and siRNA were stable even at a molar ratio of 1 : 2. The high cellular uptake (>80%) and localization of the copolymer vectors inside the cells were easily analyzed by tracking the fluorescence of polythiophene using fluorescent microscopy and cytometry. Anin vitroluciferase knockdown (KD) assay in A549-luc cells demonstrated that the siRNA complexes with more hydrophobic copolymers achieved a higher KD efficiency of 52.8% without notable cytotoxicity, indicating protein-specific KD activity rather than solely the cytotoxicity of the materials. Our polythiophene copolymers should serve as novel, efficient, low cell toxicity, and label-free siRNA delivery systems.


2009 ◽  
Vol 296 (2) ◽  
pp. C242-C249 ◽  
Author(s):  
Corttrell M. Kinney ◽  
Unni M. Chandrasekharan ◽  
Lin Yang ◽  
Jianzhong Shen ◽  
Michael Kinter ◽  
...  

Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) is a nuclear, dual-specificity phosphatase that has been shown to dephosphorylate MAP kinases. We used a “substrate-trap” technique involving a mutation in MKP-1 of the catalytically critical cysteine to a serine residue (“CS” mutant) to capture novel MKP-1 substrates. We transfected the MKP-1 (CS) mutant and control (wild-type, WT) constructs into phorbol 12-myristate 13-acetate (PMA)-activated COS-1 cells. MKP-1-substrate complexes were immunoprecipitated, which yielded four bands of 17, 15, 14, and 10 kDa with the CS MKP-1 mutant but not the WT MKP-1. The bands were identified by mass spectrometry as histones H3, H2B, H2A, and H4, respectively. Histone H3 was phosphorylated, and purified MKP-1 dephosphorylated histone H3 (phospho-Ser-10) in vitro; whereas, histone H3 (phospho-Thr-3) was unaffected. We have previously shown that thrombin and vascular endothelial growth factor (VEGF) upregulated MKP-1 in human endothelial cells (EC). We now show that both thrombin and VEGF caused dephosphorylation of histone H3 (phospho-Ser-10) and histone H3 (phospho-Thr-3) in EC with kinetics consistent with MKP-1 induction. Furthermore, MKP-1-specific small interfering RNA (siRNA) prevented VEGF- and thrombin-induced H3 (phospho-Ser-10) dephosphorylation but had no effect on H3 (phospho-Thr-3 or Thr-11) dephosphorylation. In summary, histone H3 is a novel substrate of MKP-1, and VEGF- and thrombin-induced H3 (phospho-Ser-10) dephosphorylation requires MKP-1. We propose that MKP-1-mediated H3 (phospho-Ser-10) dephosphorylation is a key regulatory step in EC activation by VEGF and thrombin.


2022 ◽  
Vol 12 ◽  
Author(s):  
Peiguo Yuan ◽  
Kiwamu Tanaka ◽  
B. W. Poovaiah

Calcium (Ca2+) signaling in plant cells is an essential and early event during plant-microbe interactions. The recognition of microbe-derived molecules activates Ca2+ channels or Ca2+ pumps that trigger a transient increase in Ca2+ in the cytoplasm. The Ca2+ binding proteins (such as CBL, CPK, CaM, and CML), known as Ca2+ sensors, relay the Ca2+ signal into down-stream signaling events, e.g., activating transcription factors in the nucleus. For example, CaM and CML decode the Ca2+ signals to the CaM/CML-binding protein, especially CaM-binding transcription factors (AtSRs/CAMTAs), to induce the expressions of immune-related genes. In this review, we discuss the recent breakthroughs in down-stream Ca2+ signaling as a dynamic process, subjected to continuous variation and gradual change. AtSR1/CAMTA3 is a CaM-mediated transcription factor that represses plant immunity in non-stressful environments. Stress-triggered Ca2+ spikes impact the Ca2+-CaM-AtSR1 complex to control plant immune response. We also discuss other regulatory mechanisms in which Ca2+ signaling activates CPKs and MAPKs cascades followed by regulating the function of AtSR1 by changing its stability, phosphorylation status, and subcellular localization during plant defense.


Sign in / Sign up

Export Citation Format

Share Document