scholarly journals Quantum key distribution with correlated sources

2020 ◽  
Vol 6 (37) ◽  
pp. eaaz4487 ◽  
Author(s):  
Margarida Pereira ◽  
Go Kato ◽  
Akihiro Mizutani ◽  
Marcos Curty ◽  
Kiyoshi Tamaki

In theory, quantum key distribution (QKD) offers information-theoretic security. In practice, however, it does not due to the discrepancies between the assumptions used in the security proofs and the behavior of the real apparatuses. Recent years have witnessed a tremendous effort to fill the gap, but the treatment of correlations among pulses has remained a major elusive problem. Here, we close this gap by introducing a simple yet general method to prove the security of QKD with arbitrarily long-range pulse correlations. Our method is compatible with those security proofs that accommodate all the other typical device imperfections, thus paving the way toward achieving implementation security in QKD with arbitrary flawed devices. Moreover, we introduce a new framework for security proofs, which we call the reference technique. This framework includes existing security proofs as special cases, and it can be widely applied to a number of QKD protocols.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
René Schwonnek ◽  
Koon Tong Goh ◽  
Ignatius W. Primaatmaja ◽  
Ernest Y.-Z. Tan ◽  
Ramona Wolf ◽  
...  

AbstractDevice-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the first DIQKD experiments, but current proposals are just out of reach of today’s loophole-free Bell experiments. Here, we significantly narrow the gap between the theory and practice of DIQKD with a simple variant of the original protocol based on the celebrated Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. By using two randomly chosen key generating bases instead of one, we show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time. We also compute the finite-key security of the protocol for general attacks, showing that approximately 108–1010 measurement rounds are needed to achieve positive rates using state-of-the-art experimental parameters. Our proposed DIQKD protocol thus represents a highly promising path towards the first realisation of DIQKD in practice.


2014 ◽  
Vol 33 ◽  
pp. 1460361 ◽  
Author(s):  
Lachlan J. Gunn ◽  
James M. Chappell ◽  
Andrew Allison ◽  
Derek Abbott

While information-theoretic security is often associated with the one-time pad and quantum key distribution, noisy transport media leave room for classical techniques and even covert operation. Transit times across the public internet exhibit a degree of randomness, and cannot be determined noiselessly by an eavesdropper. We demonstrate the use of these measurements for information-theoretically secure communication over the public internet.


2021 ◽  
Vol 2056 (1) ◽  
pp. 012011
Author(s):  
Chan Myae Hein ◽  
T F Kamalov

Abstract A new eavesdropping strategy is proposed for the Quantum Key Distribution (QKD) protocol. This scheme represents a new kind of intercept/resend strategy based on Bell’s theorem. Quantum key distribution (QKD) provides the foremost reliable form of secure key exchange, using only the input-output statistics of the devices to realize information-theoretic security. In this paper, we present an improved QKD protocol that can simultaneously distribute the quantum secret key. We are already using the QKD protocol with simulated results matched completely with the theoretical concepts.


2013 ◽  
Vol 20 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Robert Mingesz ◽  
Laszlo Bela Kish ◽  
Zoltan Gingl ◽  
Claes-Göran Granqvist ◽  
He Wen ◽  
...  

Abstract There is an ongoing debate about the fundamental security of existing quantum key exchange schemes. This debate indicates not only that there is a problem with security but also that the meanings of perfect, imperfect, conditional and unconditional (information theoretic) security in physically secure key exchange schemes are often misunderstood. It has been shown recently that the use of two pairs of resistors with enhanced Johnsonnoise and a Kirchhoff-loop ‒ i.e., a Kirchhoff-Law-Johnson-Noise (KLJN) protocol ‒ for secure key distribution leads to information theoretic security levels superior to those of today’s quantum key distribution. This issue is becoming particularly timely because of the recent full cracks of practical quantum communicators, as shown in numerous peer-reviewed publications. The KLJN system is briefly surveyed here with discussions about the essential questions such as (i) perfect and imperfect security characteristics of the key distribution, and (ii) how these two types of securities can be unconditional (or information theoretical).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peter Brown ◽  
Hamza Fawzi ◽  
Omar Fawzi

AbstractThe rates of quantum cryptographic protocols are usually expressed in terms of a conditional entropy minimized over a certain set of quantum states. In particular, in the device-independent setting, the minimization is over all the quantum states jointly held by the adversary and the parties that are consistent with the statistics that are seen by the parties. Here, we introduce a method to approximate such entropic quantities. Applied to the setting of device-independent randomness generation and quantum key distribution, we obtain improvements on protocol rates in various settings. In particular, we find new upper bounds on the minimal global detection efficiency required to perform device-independent quantum key distribution without additional preprocessing. Furthermore, we show that our construction can be readily combined with the entropy accumulation theorem in order to establish full finite-key security proofs for these protocols.


2014 ◽  
Vol 14 (7&8) ◽  
pp. 589-607
Author(s):  
Xiu-Bo Chen ◽  
Gang Xu ◽  
Yuan Su ◽  
Yi-Xian Yang

In this paper, the perfect secret sharing in quantum cryptography is investigated. On one hand, the security of a recent protocol [Adhikari et al. Quantum Inform. \& Comput. 12 (2012) 0253-0261] is re-examined. We find that it violates the requirement of information theoretic security in the secret sharing and suffers from the information leakage. The cryptanalysis including several specific attack strategies are given, which shows that a dishonest participant can steal half or all of the secrets without being detected. On the other hand, we design a new quantum secret sharing protocol. The security of protocol is rigorously proved. It meets the fundamental requirement of information theoretic security. Furthermore, the security analysis including both the outside attacks and participant attacks is given in details. It is shown that our proposed protocol can achieve perfect secret sharing.


2021 ◽  
Vol 21 (3&4) ◽  
pp. 0181-0202
Author(s):  
Khodakhast Bibak ◽  
Robert Ritchie ◽  
Behrouz Zolfaghari

Quantum key distribution (QKD) offers a very strong property called everlasting security, which says if authentication is unbroken during the execution of QKD, the generated key remains information-theoretically secure indefinitely. For this purpose, we propose the use of certain universal hashing based MACs for use in QKD, which are fast, very efficient with key material, and are shown to be highly secure. Universal hash functions are ubiquitous in computer science with many applications ranging from quantum key distribution and information security to data structures and parallel computing. In QKD, they are used at least for authentication, error correction, and privacy amplification. Using results from Cohen [Duke Math. J., 1954], we also construct some new families of $\varepsilon$-almost-$\Delta$-universal hash function families which have much better collision bounds than the well-known Polynomial Hash. Then we propose a general method for converting any such family to an $\varepsilon$-almost-strongly universal hash function family, which makes them useful in a wide range of applications, including authentication in QKD.


Sign in / Sign up

Export Citation Format

Share Document