scholarly journals Elastic and Plastic Deformation Behavior Studied by In-Situ Synchrotron X-ray Diffraction in Nanocrystalline Nickel

2016 ◽  
Vol 57 (9) ◽  
pp. 1447-1453 ◽  
Author(s):  
Hiroki Adachi ◽  
Yui Karamatsu ◽  
Shota Nakayama ◽  
Tomotaka Miyazawa ◽  
Masugu Sato ◽  
...  
2020 ◽  
Vol 6 (37) ◽  
pp. eaaz4748 ◽  
Author(s):  
Chanho Lee ◽  
George Kim ◽  
Yi Chou ◽  
Brianna L. Musicó ◽  
Michael C. Gao ◽  
...  

Single-phase solid-solution refractory high-entropy alloys (HEAs) show remarkable mechanical properties, such as their high yield strength and substantial softening resistance at elevated temperatures. Hence, the in-depth study of the deformation behavior for body-centered cubic (BCC) refractory HEAs is a critical issue to explore the uncovered/unique deformation mechanisms. We have investigated the elastic and plastic deformation behaviors of a single BCC NbTaTiV refractory HEA at elevated temperatures using integrated experimental efforts and theoretical calculations. The in situ neutron diffraction results reveal a temperature-dependent elastic anisotropic deformation behavior. The single-crystal elastic moduli and macroscopic Young’s, shear, and bulk moduli were determined from the in situ neutron diffraction, showing great agreement with first-principles calculations, machine learning, and resonant ultrasound spectroscopy results. Furthermore, the edge dislocation–dominant plastic deformation behaviors, which are different from conventional BCC alloys, were quantitatively described by the Williamson-Hall plot profile modeling and high-angle annular dark-field scanning transmission electron microscopy.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1619
Author(s):  
Qingkun Meng ◽  
Huan Li ◽  
Kai Wang ◽  
Shun Guo ◽  
Fuxiang Wei ◽  
...  

The low modulus β-type Ti alloys usually have peculiar deformation behaviors due to their low phase stability. However, the study of the underlying mechanisms is challenging since some physical mechanisms are fully reversible after the release of the load. In this paper, the deformation behavior of a low modulus β-type Ti36Nb5Zr alloy was investigated with the aid of in situ synchrotron X-ray diffraction (SXRD) during tensile loading. The evolution of lattice strains and relative integrated diffraction peak intensities of both the β and α” phases were analyzed to determine the characteristics of the potential deformation mechanisms. Upon loading, the α” diffraction spots appeared at specific azimuth angles of the two-dimensional SXRD patterns due to the <110> fiber texture of original β grains and the selection of favorable martensitic variants. The nonlinear deformation behavior originated from a reversible stress-induced martensitic transformation (SIMT). However, the SIMT contributed a little to the large recoverable strain of over 2.0%, which was dominated by the elastic deformation of the β phase. Various deformation mechanisms were activated successively at different applied strains, including elastic deformation, SIMT and plastic deformation. Our investigations provide in-depth understandings of the deformation mechanisms in β-type Ti alloys with low elastic modulus.


Sign in / Sign up

Export Citation Format

Share Document