scholarly journals One-step vapor-phase synthesis of transparent high refractive index sulfur-containing polymers

2020 ◽  
Vol 6 (28) ◽  
pp. eabb5320 ◽  
Author(s):  
Do Heung Kim ◽  
Wontae Jang ◽  
Keonwoo Choi ◽  
Ji Sung Choi ◽  
Jeffrey Pyun ◽  
...  

High refractive index polymers (HRIPs) have recently emerged as an important class of materials for use in a variety of optoelectronic devices including image sensors, lithography, and light-emitting diodes. However, achieving polymers having refractive index exceeding 1.8 while maintaining full transparency in the visible range still remains formidably challenging. Here, we present a unique one-step vapor-phase process, termed sulfur chemical vapor deposition, to generate highly stable, ultrahigh refractive index (n > 1.9) polymers directly from elemental sulfur. The deposition process involved vapor-phase radical polymerization between elemental sulfur and vinyl monomers to provide polymer films with controlled thickness and sulfur content, along with the refractive index as high as 1.91. Notably, the HRIP thin film showed unprecedented optical transparency throughout the visible range, attributed to the absence of long polysulfide segments within the polymer, which will serve as a key component in a wide range of optical devices.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vijay S. Wadi ◽  
Kishore K. Jena ◽  
Kevin Halique ◽  
Brigita Rožič ◽  
Luka Cmok ◽  
...  

Abstract In this work, we demostrate the preparation of low cost High Refractive Index polystyrene-sulfur nanocomposites in one step by combining inverse vulcanization and melt extrusion method. Poly(sulfur-1,3-diisopropenylbenzene) (PS-SD) copolymer nanoparticles (5 to 10 wt%) were generated in the polystyrene matrix via in situ inverse vulcanization reaction during extrusion process. Formation of SD copolymer was confirmed by FTIR and Raman spectroscopy. SEM and TEM further confirms the presence of homogeneously dispersed SD nanoparticles in the size range of 5 nm. Thermal and mechanical properties of these nanocomposites are comparable with the pristine polystyrene. The transparent nanocomposites exhibits High Refractive Index n = 1.673 at 402.9 nm and Abbe’y number ~ 30 at 10 wt% of sulfur loading. The nanocomposites can be easily processed into mold, films and thin films by melt processing as well as solution casting techniques. Moreover, this one step preparation method is scalable and can be extend to the other polymers.


2014 ◽  
Vol 26 (19) ◽  
pp. 3014-3018 ◽  
Author(s):  
Jared J. Griebel ◽  
Soha Namnabat ◽  
Eui Tae Kim ◽  
Roland Himmelhuber ◽  
Dominic H. Moronta ◽  
...  

2008 ◽  
Author(s):  
Jesse O. Enlow ◽  
Hao Jiang ◽  
Kurt G. Eyink ◽  
John T. Grant ◽  
Weijie Su ◽  
...  

2020 ◽  
Vol 9 (2) ◽  
pp. 245-259 ◽  
Author(s):  
Tristan S. Kleine ◽  
Richard S. Glass ◽  
Dennis L. Lichtenberger ◽  
Michael E. Mackay ◽  
Kookheon Char ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sacha Legrand ◽  
Ari Kärkkäinen

Abstract A new carbosilane has been synthesised in one step by hydrosilylation of 1,3-dimethyl-tetravinyldisiloxane with triphenyl silane. The new carbosilane has been characterized by 1D and 2D NMR, MS, and Gel Permeation Chromatography (GPC). The new carbosilane has been spin-coated on silicon wafers to prepare a film with very high refractive index (μ = 1.520) and excellent hydrophobicity. The film has also been analysed by Diffuse Reflectance Infrared Spectroscopy (DRIFT). The preparation of the new carbosilane does not generate waste, and its application can be easily scaled-up. Consequently, the new precursor is likely to be very useful for industrial optoelectronic applications.


Nanoscale ◽  
2017 ◽  
Vol 9 (40) ◽  
pp. 15416-15422 ◽  
Author(s):  
Kai Zhang ◽  
Jia Ding ◽  
Zheng Lou ◽  
Ruiqing Chai ◽  
Mianzeng Zhong ◽  
...  

Heterostructured ZnS/InP nanowires, composed of single-crystalline ZnS nanowires coated with a layer of InP shell, were synthesized via a one-step chemical vapor deposition process.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6106
Author(s):  
Yinan Zhang ◽  
Shiren Chen ◽  
Jing Han

All-dielectric nanoparticles, as the counterpart of metallic nanostructures have recently attracted significant interest in manipulating light-matter interaction at a nanoscale. Directional scattering, as an important property of nanoparticles, has been investigated in traditional high refractive index materials, such as silicon, germanium and gallium arsenide in a narrow band range. Here in this paper, we demonstrate that a broadband forward scattering across the entire visible range can be achieved by the low loss TiO2 nanoparticles with moderate refractive index. This mainly stems from the optical interferences between the broadband electric dipole and the magnetic dipole modes. The forward/backward scattering ratio reaches maximum value at the wavelengths satisfying the first Kerker’s condition. Experimentally, the femtosecond pulsed laser was employed to splash different-sized nanoparticles from a thin TiO2 film deposited on the glass substrate. Single particle scattering measurement in both the forward and backward direction was performed by a homemade confocal microscopic system, demonstrating the broadband forward scattering feature. Our research holds great promise for many applications such as light harvesting, photodetection and on-chip photonic devices and so on.


Sign in / Sign up

Export Citation Format

Share Document