scholarly journals A large meteoritic event over Antarctica ca. 430 ka ago inferred from chondritic spherules from the Sør Rondane Mountains

2021 ◽  
Vol 7 (14) ◽  
pp. eabc1008
Author(s):  
M. Van Ginneken ◽  
S. Goderis ◽  
N. Artemieva ◽  
V. Debaille ◽  
S. Decrée ◽  
...  

Large airbursts, the most frequent hazardous impact events, are estimated to occur orders of magnitude more frequently than crater-forming impacts. However, finding traces of these events is impeded by the difficulty of identifying them in the recent geological record. Here, we describe condensation spherules found on top of Walnumfjellet in the Sør Rondane Mountains, Antarctica. Affinities with similar spherules found in EPICA Dome C and Dome Fuji ice cores suggest that these particles were produced during a single-asteroid impact ca. 430 thousand years (ka) ago. The lack of a confirmed crater on the Antarctic ice sheet and geochemical and 18O-poor oxygen isotope signatures allow us to hypothesize that the impact particles result from a touchdown event, in which a projectile vapor jet interacts with the Antarctic ice sheet. Numerical models support a touchdown scenario. This study has implications for the identification and inventory of large cosmic events on Earth.

1999 ◽  
Vol 23 (2) ◽  
pp. 159-179 ◽  
Author(s):  
Martin J. Siegert

Airborne radio-echo sounding (RES) data display layering within the Antarctic ice sheet. At ice depths below 1000m these layers are caused by horizons of ice with relatively high acidity which were originally deposited on the ice surface after large volcanic events. Layering which is less than 1000 m from the ice surface can also be due to variation in ice density. Theoretically, therefore, internal RES layering below 1000 m should represent isochronous planes. This theory is upheld under examination of existing RES data where internal layers have been observed to follow the rules of superposition. For example, RES layers are deposited as discrete bands, fold and fault in a manner analogous to geological features, never cross over each other and, in an undisturbed deposit, have a depth-age relationship which means that the oldest layers are located at the lowest level. Moreover, the location of internal layering is independent of radiowave receiver altitude, the frequency of the radiowave does not affect layer depth, and the pulse width of the e/m wave does not affect identification of layers. Thus, RES reflects actual dielectric layering within the ice sheet. Glaciologists use RES layering for a number of reasons, including: (1) correlating ice cores; (2) as boundary conditions for numerical models to help determine the direction of ice flow; and (3) as a means of identifying the three-dimensional ice-sheet geometry and architecture.


1969 ◽  
Vol 6 (4) ◽  
pp. 903-910 ◽  
Author(s):  
John T. Hollin

If they had occurred, ice-sheet surges would have caused sea-level rises of up to 50 m from Gondwanaland and say 20 m from Antarctica. The rises would have taken 100 years or much less, and the sub sequent falls would have taken 50 000 years or so, as the ice built up again. Such rises may explain the extensive (hundreds of miles ?) and sharp (submergence time 4 years ?) coal – marine shale contacts in the Carboniferous cyclothems. The chief rival explanation for these contacts is sudden subsidence. Tests should show (1) if such contacts are better correlated with periods of glaciation or with areas of tectonic activity, (2) how extensive the contacts really are, (3) if there is any evidence of erosion during sea-level falls, (4) if the amplitudes and periods of the cycles fit surges or subsidence, (5) how fast the submergences were, and (6) if any coolings began at the contacts. Wilson suggests that in the Pleistocene the surge coolings were sufficient to trigger the northern ice ages. If so, interglacial pollen profiles should show rapid but temporary marine transgressions beginning at the break of climate. Evidence suggesting such transgressions occurs in England and the United States, but is still insufficient to disprove explanations such as local downwarping. There is no evidence yet for surges in Wisconsin or Post-glacial time. There is some evidence that the Antarctic Ice Sheet is currently building up, but this could be a response to a Post-glacial accumulation increase rather than the prelude to a surge.


1979 ◽  
Vol 24 (90) ◽  
pp. 147-153 ◽  
Author(s):  
A. J. Gow ◽  
H. Kohnen

Abstract Deep cores from Byrd Station were used to calibrate an ultrasonic technique of evaluating crystal anisotropy in the Antarctic ice sheet. Velocities measured parallel (V p ↓) and perpendicular (V p →) to the vertical axis of the cores yielded data in excellent agreement with the observed c-axis fabric profile and with the in-situ P-wave velocity profile measured parallel to the bore-hole axis by Bentley. Velocity differences ΔV (ΔV = V p ↓ – V p→) in excess of 140 m s−1 for cores from below 1300 m attest to the tight clustering of c-axes of crystals about the vertical, especially in the zone 1 300-1800 m. A small but significant decline in V p ↓ with ageing of the core, as deduced from Bentley’s down-hole data, is attributed to the formation of oriented cracks that occur in the ice cores as they relax from environmental stresses. This investigation of cores from the 2164 m thick ice sheet at Byrd Station establishes the ultrasonic technique as a viable method of monitoring relaxation characteristics of drilled cores and for determining the gross trends of c-axis orientation in ice sheets. The Byrd Station data, in conjunction with Barkov’s investigation of deep cores from Vostok, East Antarctica, also indicate that crystal anisotropy in the Antarctic ice sheet is dominated by a clustering of c-axes about a vertical symmetry axis.


2021 ◽  
Author(s):  
Yijing Lin ◽  
Yan Liu ◽  
Zhitong Yu ◽  
Xiao Cheng ◽  
Qiang Shen ◽  
...  

Abstract. The input-output method (IOM) is one of the most popular methods of estimating the ice sheet mass balance (MB), with a significant advantage in presenting the dynamics response of ice to climate change. Assessing the uncertainties of the MB estimation using the IOM is crucial to gaining a clear understanding of the Antarctic ice-sheet mass budget. Here, we introduce a framework for assessing the uncertainties in the MB estimation due to the methodological differences in the IOM, the impact of the parameterization and scale effect on the modeled surface mass balance (SMB, input), and the impact of the uncertainties of ice thickness, ice velocity, and grounding line data on ice discharge (D, output). For the assessment of the D’s uncertainty, we present D at a fine scale. Compared with the goal of determining the Antarctic MB within an uncertainty of 15 Gt yr−1, we found that the different strategies employed in the methods cause considerable uncertainties in the annual MB estimation. The uncertainty of the RACMO2.3 SMB caused by its parameterization can reach 20.4 Gt yr−1, while that due to the scale effect is up to 216.7 Gt yr−1. The observation precisions of the MEaSUREs InSAR-based velocity (1–17 m yr−1), the airborne radio-echo sounder thickness (±100 m), and the MEaSUREs InSAR-based grounding line (±100 m) contribute uncertainties of 17.1 Gt yr−1, 10.5 ± 2.7 Gt yr−1 and 8.0~27.8 Gt yr−1 to the D, respectively. However, the D’s uncertainty due to the remarkable ice thickness data gap, which is represented by the thickness difference between the BEDMAP2 and the BedMachine reaches 101.7 Gt yr−1, which indicates its dominant cause of the future D’s uncertainty. In addition, the interannual variability of D caused by the annual changes in the ice velocity and ice thickness are considerable compared with the target uncertainty of 15 Gt yr−1, which cannot be ignored in annual MB estimations.


2021 ◽  
Author(s):  
Anna Hogg ◽  
Noel Gourmelen ◽  
Richard Rigby ◽  
Thomas Slater

<p>The Antarctic Ice sheet is a key component of the Earth system, impacting on global sea level, ocean circulation and atmospheric processes. Meltwater is generated at the ice sheet base primarily by geothermal heating and friction associated with ice flow, and this feeds a vast network of lakes and rivers creating a unique hydrological environment. Subglacial lakes play a fundamental role in the Antarctic ice sheet hydrological system because outbursts from ‘active’ lakes can trigger, (i) change in ice speed, (ii) a burst of freshwater input into the ocean which generates buoyant meltwater plumes, and (iii) evolution of glacial landforms and sub-glacial habitats. Despite the key role that sub-glacial hydrology plays on the ice sheet environment, there are limited observations of repeat sub-glacial lake activity resulting in poor knowledge of the timing and frequency of these events. Even rarer are examples of interconnected lake activity, where the draining of one lake triggers filling of another. Observations of this nature help us better characterise these events and the impact they may have on Antarctica’s hydrological budget, and will advance our knowledge of the physical mechanism responsible for triggering this activity. In this study we analyse 9-years of CryoSat-2 radar altimetry data, to investigate a newly identified sub-glacial network in the Amery basin, East Antarctica. CryoSat-2 data was processed in ‘swath mode’, increasing the density of elevation measurements across the study area. The plane fit method was employed in 500 m by 500 m grid cells, to measure surface elevation change at relatively high spatial resolution. We identified a network of 10 active subglacial lakes in the Amery basin. 7 of these lakes, located below Lambert Glacier, show interconnected hydrological behaviour, with filling and drainage events throughout the study period. We observed ice surface height change of up to 6 meters on multiple lakes, and these observations were validated by independently acquired TanDEM-X DEM differencing. This case study is an important decade long record of hydrological activity beneath the Antarctic Ice Sheet which demonstrates the importance of high resolution swath mode measurements. In the future the Lambert lake network will be used to better understand the filling and draining life cycle of sub-glacial hydrological activity under the Antarctic Ice Sheet.</p><p></p>


2021 ◽  
Author(s):  
Nathaelle Bouttes ◽  
Didier Roche ◽  
Fanny Lhardy ◽  
Aurelien Quiquet ◽  
Didier Paillard ◽  
...  

<p>The last deglaciation is a time of large climate transition from a cold Last Glacial Maximum at 21,000 years BP with extensive ice sheets, to the warmer Holocene 9,000 years BP onwards with reduced ice sheets. Despite more and more proxy data documenting this transition, the evolution of climate is not fully understood and difficult to simulate. The PMIP4 protocol (Ivanovic et al., 2016) has indicated which boundary conditions to use in model simulations during this transition. The common boundary conditions should enable consistent multi model and model-data comparisons. While the greenhouse gas concentration evolution and orbital forcing are well known and easy to prescribe, the evolution of ice sheets is less well constrained and several choices can be made by modelling groups. First, two ice sheet reconstructions are available: ICE-6G (Peltier et al., 2015) and GLAC-1D (Tarasov et al., 2014). On top of topographic changes, it is left to modelling groups to decide whether to account for the associated bathymetry and land-sea mask changes, which is technically more demanding. These choices could potentially lead to differences in the climate evolution, making model comparisons more complicated.</p><p>We use the iLOVECLIM model of intermediate complexity (Goosse et al., 2010) to evaluate the impact of different ice sheet reconstructions and the effect of bathymetry changes on the global climate evolution during the Last deglaciation. We test the two ice sheet reconstructions (ICE-6G and GLAC-1D), and have implemented changes of bathymetry and land-sea mask. In addition, we also evaluate the impact of accounting for the Antarctic ice sheet evolution compared to the Northern ice sheets only.</p><p>We show that despite showing the same long-term changes, the two reconstructions lead to different evolutions. The bathymetry plays a role, although only few changes take place before ~14ka. Finally, the impact of the Antarctic ice sheet is important during the deglaciation and should not be neglected.</p><p>References</p><p>Goosse, H., et al., Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603–633, https://doi.org/10.5194/gmd-3-603-2010, 2010</p><p>Ivanovic, R. F., et al., Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, 2016</p><p>Peltier, W. R., Argus, D. F., and Drummond, R., Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model, J. Geophys. Res.-Sol. Ea., 120, 450–487, doi:10.1002/2014JB011176, 2015</p><p>Tarasov,L.,  et al., The global GLAC-1c deglaciation chronology, melwater pulse 1-a, and a question of missing ice, IGS Symposium on Contribution of Glaciers and Ice Sheets to Sea-Level Change, 2014</p>


1979 ◽  
Vol 23 (89) ◽  
pp. 185-192 ◽  
Author(s):  
A. J. Gow ◽  
S. Epstein ◽  
W. Sheehy

Abstract Cores from the bottom 4.83 m of the Antarctic ice sheet at Byrd Station contain abundant stratified debris ranging from silt-sized particles to cobbles. The nature and disposition of the debris, together with measurements of the physical properties of the inclosing ice, indicate that this zone of dirt-laden ice originated by “freezing-in” at the base of the ice sheet. The transition from air-rich glacial ice to ice practically devoid of air coincided precisely with the first appearance of debris in the ice at 4.83 m above the bed. Stable-isotope studies made in conjunction with gas-content measurements also confirm the idea of incorporation of basal debris by adfreezing of melt water at the ice―rock interface. It is suggested that the absence of air from basal ice may well constitute the most diagnostic test for discriminating between debris incorporated in a melt―refreeze process and debris entrapped by purely mechanical means, e.g. shearing. We conclude from our observations on bottom cores from Byrd Station that “freezing-in” of basal debris is the major mechanism by which sediment is incorporated into polar ice sheets.


1998 ◽  
Vol 10 (3) ◽  
pp. 223-223
Author(s):  
Ian D. Goodwin

The spatial configuration of the Antarctic ice sheet has fluctuated widely during the Late Quaternary, primarily in response to climate and sea-level forcings. Ice core time-series have long been used as proxy climate records for the Antarctic ice sheet surface and polar atmosphere, and there has been a major multinational effort to drill ice cores on or near the summit of ice domes to retrieve the longest possible records. The annual layering of ice accumulation has afforded high resolution proxy climate records on annual to decadal intervals, spanning a few hundred to hundreds of thousands of years. These time-series have also detailed the changes in the ice sheet surface elevation and dynamics, particularly since the transition from glacial to Holocene climate. However, ice sheet sensitivity to external forcings and the associated fluctuations in ice volume are probably best researched around the ice sheet's margins. The sedimentary record in these circumAntarctic margins holds the key to our unravelling of past and future responses of the Antarctic ice sheet and circumpolar oceans to climate and environmental change, including: fluctuations in ice volume; the distribution of ice shelves; the production of Antarctic bottom water; the variability in the fast ice and pack ice characteristics; biogeochemical cycling and marine productivity; and the evolutionary response of marine and terrestrial species and ecosystems.


Sign in / Sign up

Export Citation Format

Share Document