scholarly journals Metal atom–guided conformational analysis of single polynuclear coordination molecules

2021 ◽  
Vol 7 (32) ◽  
pp. eabd9887
Author(s):  
Kenji Takada ◽  
Mari Morita ◽  
Takane Imaoka ◽  
Junko Kakinuma ◽  
Ken Albrecht ◽  
...  

Microscopic observation of single molecules is a rapidly expanding field in chemistry and differs from conventional characterization techniques that require a large number of molecules. One of such form of single-molecule microscopy is high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), which is especially suitable for coordination compounds because of its atomic number–dependent contrast. However, to date, single-molecule observations using HAADF-STEM has limited to simple planar molecules. In the present study, we demonstrate a direct structural investigation of nonplanar dendronized polynuclear Ir complexes with subnanometer resolution using Ir as an atomic label. Decreasing the electron dose to the dendrimer complexes is critical for the single-molecule observation. A comparison with simulated STEM images of conformational isomers is performed to determine the most plausible conformation. Our results enlarge the potential of electron microscopic observation to realize structural analysis of coordination macromolecules, which has been impossible with conventional methods.

Clay Minerals ◽  
2016 ◽  
Vol 51 (4) ◽  
pp. 603-613 ◽  
Author(s):  
Sayako Inoué ◽  
Toshihiro Kogure

AbstractThe distribution of octahedral cations in the two component layers of a 7 Å–14 Å interstratified mineral with a bulk chemical composition (Fe4.122+Mg0.07Mn0.01Al1.69□0.11)(Si2.56Al1.44) O10(OH)8 was investigated using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) in combination with the image simulations. In the 14 Å component layers, comparison between the observed and simulated images revealed that the M4 sites of the interlayer sheets were occupied preferentially by Al together with a small amount of Fe; the other M1, M2 and M3 sites were occupied by dominant Fe and residual Al in equal proportions. Two types of octahedral sheets with disordered and ordered cation distributions were recognized in the 7 Å component layers. The two types of sheets were similar to the octahedral sheet of the 2:1 layer and the interlayer sheet in the 14 Å layer above, respectively. Irregular vertical stacking and lateral contact of the different component layers in structure and chemistry characterized the interstratification, which may be caused by rapid precipitation and accretion of the component layers in hydrothermal environments.


Author(s):  
Earl J. Kirkland ◽  
Robert J. Keyse

An ultra-high resolution pole piece with a coefficient of spherical aberration Cs=0.7mm. was previously designed for a Vacuum Generators HB-501A Scanning Transmission Electron Microscope (STEM). This lens was used to produce bright field (BF) and annular dark field (ADF) images of (111) silicon with a lattice spacing of 1.92 Å. In this microscope the specimen must be loaded into the lens through the top bore (or exit bore, electrons traveling from the bottom to the top). Thus the top bore must be rather large to accommodate the specimen holder. Unfortunately, a large bore is not ideal for producing low aberrations. The old lens was thus highly asymmetrical, with an upper bore of 8.0mm. Even with this large upper bore it has not been possible to produce a tilting stage, which hampers high resolution microscopy.


2009 ◽  
Vol 24 (8) ◽  
pp. 2596-2604 ◽  
Author(s):  
Sašo Šturm ◽  
Makoto Shiojiri ◽  
Miran Čeh

The microstructure in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics is strongly affected by the formation of Ruddlesden-Popper fault–rich (RP fault) lamellae, which are coherently intergrown with the matrix of the perovskite grains. We studied the structure and chemistry of RP faults by applying quantitative high-resolution transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy analyses. We showed that the Sr2+ and Ca2+ dopant ions form RP faults during the initial stage of sintering. The final microstructure showed preferentially grown RP fault lamellae embedded in the central part of the anisotropic perovskite grains. In contrast, the dopant Ba2+ ions preferably substituted for Sr2+ in the SrTiO3 matrix by forming a BaxSr1−xTiO3 solid solution. The surplus of Sr2+ ions was compensated structurally in the later stages of sintering by the formation of SrO-rich RP faults. The resulting microstructure showed RP fault lamellae located at the surface of equiaxed BaxSr1-xTiO3 perovskite grains.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
N. Baladés ◽  
D. L. Sales ◽  
M. Herrera ◽  
A. M. Raya ◽  
J. C. Hernández-Garrido ◽  
...  

This paper explores the capability of scanning transmission electron microscopy (STEM) techniques in determining the dispersion degree of graphene layers within the carbon matrix by using simulated high-angle annular dark-field (HAADF) images. Results ensure that unmarked graphene layers are only detectable if their orientation is parallel to the microscope beam. Additionally, gold-marked graphene layers allow evaluating the dispersion degree in structural composites. Moreover, electron tomography has been demonstrated to provide truthfully 3D distribution of the graphene sheets inside the matrix when an appropriate reconstruction algorithm and 2D projections including channelling effect are used.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4531
Author(s):  
Maria Meledina ◽  
Geert Watson ◽  
Alexander Meledin ◽  
Pascal Van Der Voort ◽  
Joachim Mayer ◽  
...  

Ru catalyst nanoparticles were encapsulated into the pores of a Cr-based metal-organic framework (MOF)—MIL-101. The obtained material, as well as the non-loaded MIL-101, were investigated down to the atomic scale by annular dark-field scanning transmission electron microscopy using low dose conditions and fast image acquisition. The results directly show that the used wet chemistry loading approach is well-fitted for the accurate embedding of the individual catalyst nanoparticles into the cages of the MIL-101. The MIL-101 host material remains crystalline after the loading procedure, and the encapsulated Ru nanoparticles have a metallic nature. Annular dark field scanning transmission electron microscopy, combined with EDX mapping, is a perfect tool to directly characterize both the embedded nanoparticles and the loaded nanoscale MOFs. The resulting nanostructure of the material is promising because the Ru nanoparticles hosted in the MIL-101 pores are prevented from agglomeration—the stability and lifetime of the catalyst could be improved.


Sign in / Sign up

Export Citation Format

Share Document