scholarly journals Role of warm subduction in the seismological properties of the forearc mantle: An example from southwest Japan

2021 ◽  
Vol 7 (28) ◽  
pp. eabf8934
Author(s):  
Changyeol Lee ◽  
YoungHee Kim

A warm slab thermal structure plays an important role in controlling seismic properties of the slab and mantle wedge. Among warm subduction zones, most notably in southwest Japan, the spatial distribution of large S-wave delay times and deep nonvolcanic tremors in the forearc mantle indicate the presence of a serpentinite layer along the slab interface. However, the conditions under which such a layer is generated remains unclear. Using numerical models, we here show that a serpentinite layer begins to develop by the slab-derived fluids below the deeper end of the slab-mantle decoupling interface and grows toward the corner of the mantle wedge along the interface under warm subduction conditions only, explaining the large S-wave delay times in the forearc mantle. The serpentinite layer then allows continuous free-fluid flow toward the corner of the mantle wedge, presenting possible mechanisms for the deep nonvolcanic tremors in the forearc mantle.

2021 ◽  
Author(s):  
Rilla C. McKeegan ◽  
Victor E. Guevara ◽  
Adam F. Holt ◽  
Cailey B. Condit

<p>The dominant mechanisms that control the exhumation of subducted rocks and how these mechanisms evolve through time in a subduction zone remain unclear. Dynamic models of subduction zones suggest that their thermal structures evolve from subduction initiation to maturity. The series of metamorphic reactions that occur within the slab, resultant density, and buoyancy with respect to the mantle wedge will co-evolve with the thermal structure. We combine dynamic models of subduction zone thermal structure with phase equilibria modeling to place constraints on the dominant controls on the depth limits of exhumation. This is done across the temporal evolution of a subduction zone for various endmember lithologic associations observed in exhumed high-pressure terranes: sedimentary and serpentinite mélanges, and oceanic tectonic slices.</p><p>Initial modeling suggests that both serpentinite and sedimentary mélanges remain positively buoyant with respect to the mantle wedge throughout all stages of subduction (up to 65 Myr), and for the spectrum of naturally constrained ratios of mafic blocks to serpentinite/sedimentary matrix. In these settings, exhumation depth limits and the “point of no return” (c. 2.3 GPa) are not directly limited by buoyancy, but potentially rheological changes in the slab at the blueschist-eclogite transition stemming from: the switch from amphibole-dominated to pyroxene-dominated rheology and/or dehydration embrittlement. These mechanisms may increase the possibility of brittle failure and hence promote detachment of the slab top into the subduction channel. For the range of temperatures recorded by exhumed serpentinite mélanges, the locus of dehydration for altered MORB at the slab top coincides with the point of no return (2.3 GPa) between 35 and 40 Myr, suggesting a strong temporal dependence on deep exhumation in the subduction channel. </p><p>Tectonic slices composed of 50% mafic rocks and 50% serpentinized slab mantle show a temporal dependence on the depth limits of positive buoyancy. For the range of temperatures recorded by exhumed tectonic slices, the upper pressure limit of positive buoyancy is ~2 GPa, and is only crossed between ~30 and 40 Myr after subduction initiation. Some exhumed tectonic slices record much higher pressures (2.5 GPa); thus, other mechanisms or lithologic combinations may also play a significant role in determining the exhumation limits of tectonic slices. </p><p>Future work includes constraining how the loci of dehydration vary through time for different degrees of oceanic crust alteration, how exhumation limits and mechanisms may change with different subducting plate ages, and calculating how initial exhumation velocities may vary through time. Further comparison with the rock record will constrain the parameters that control the timing and limits of exhumation in subduction zones.</p>


2020 ◽  
Author(s):  
Nestor G. Cerpa ◽  
José Alberto Padrón-Navarta ◽  
Diane Arcay

<p>The subduction of water via lithospheric-mantle hydrous phases have major implications for the generation of arc and back-arc volcanism, as well as for the global water cycle. Most of the current numerical models use Perple_X [Connolly et al., 2009] to quantify water release from the slab and subsequent fluid migration in the mantle wedge. At UHP conditions, the phase diagrams generated with this thermodynamic code suggest that the breakdown of serpentine and chlorite leads to the near complete dehydration of the lithospheric mantle before reaching a 200-km depth. Laboratory experiments, however, have observed the stability of the 10-Å phase and the phase E in natural bulk compositions, which may hold moderate amounts of water, beyond the stability field of serpentine and chlorite [Fumagalli and Poli, 2005; Maurice et al., 2018]. Here, using 2D thermo-mechanical models, we explore to what extent the presence of these hydrous phases may favor a deeper subduction of water than those predicted by Perple_X.</p><p>We perform end-member models in terms of slab temperature and thickness of hydrated lithospheric mantle entering at trench. The computed geotherms within the uppermost subducted mantle show that the stability field of mantle hydrous phases around 600-800°C and 6-8 GPa is crucial for predictions of water fluxes. We point out that the lack of systematic experiments at these P-T conditions, as well as the absence of 10-Å and E phases in current thermodynamic databases, prevent accurate estimates of deep water transfers. We nonetheless build a phase diagram based on current experimental constraints that includes approximations of their stability field and qualitatively discuss the potential implications for fluid migration in the back-arc mantle wedge and water fluxes.</p>


2012 ◽  
Vol 4 (2) ◽  
pp. 919-941 ◽  
Author(s):  
A. K. Bengtson ◽  
P. E. van Keken

Abstract. Quantifying the precise thermal structure of subduction zones is essential for understanding the nature of metamorphic dehydration reactions, arc volcanism, and intermediate depth seismicity. High resolution two-dimensional (2-D) models have shown that the rheology of the mantle wedge plays a critical role and establishes strong temperature gradients in the slab. The influence of three-dimensional (3-D) subduction zone geometry on thermal structure is however not yet well characterized. A common assumption for 2-D models is that the cross-section is taken normal to the strike of the trench with a corresponding velocity reduction in the case of oblique subduction, rather than taken parallel to velocity. A comparison between a full 3-D Cartesian model with oblique subduction and selected 2-D cross-sections demonstrates that the trench-normal cross-section provides a better reproduction of the slab thermal structure than the velocity-parallel cross-section. An exception is found in the case of strongly curved subduction, such as in the Marianas, where strong 3-D flow in the mantle wedge is generated. In this case it is shown that the full 3-D model should be evaluated for an accurate prediction of the slab thermal structure.


The location and sequence of metamorphic devolatilization and partial melting reactions in subduction zones may be constrained by integrating fluid and rock pressure-temperature-time ( P-T-t ) paths predicted by numerical heat-transfer models with phase diagrams constructed for metasedimentary, metabasaltic, and ultramafic bulk compositions. Numerical experiments conducted using a two-dimensional heat transfer model demonstrate that the primary controls on subduction zone P-T-t paths are: (1) the initial thermal structure; (2) the amount of previously subducted lithosphere; (3) the location of the rock in the subduction zone; and (4) the vigour of mantle wedge convection induced by the subducting slab. Typical vertical fluid fluxes out of the subducting slab range from less than 0.1 to 1 (kg fluid) m -2 a -1 for a convergence rate of 3 cm a -1 . Partial melting of the subducting, amphibole-bearing oceanic crust is predicted to only occur during the early stages of subduction initiated in young (less than 50 Ma) oceanic lithosphere. In contrast, partial melting of the overlying mantle wedge occurs in many subduction zone experiments as a result of the infiltration of fluids derived from slab devolatilization reactions. Partial melting in the mantle wedge may occur by a twostage process in which amphibole is first formed by H 2 O infiltration and subsequently destroyed as the rock is dragged downward across the fluid-absent ‘hornblende-out’ partial melting reaction.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Naoki Uchida ◽  
Junichi Nakajima ◽  
Kelin Wang ◽  
Ryota Takagi ◽  
Keisuke Yoshida ◽  
...  

Abstract Shear-wave anisotropy in Earth’s mantle helps constrain the lattice-preferred orientation of anisotropic minerals due to viscous flow. Previous studies at the Japan Trench subduction zone using land-based seismic networks identified strong anisotropy in the mantle wedge, reflecting viscous flow induced by the subducting slab. Here we map anisotropy in the previously uninvestigated offshore region by analyzing shear waves from interplate earthquakes that are recorded by a new seafloor network (the S-net). The newly detected anisotropy is not in the mantle wedge but only in the overlying crust (∼0.1 s time delay and trench-parallel fast direction). The distinct lack of anisotropy indicates that the forearc mantle wedge offshore is decoupled from the slab and does not participate in the viscous flow, in sharp contrast with the rest of the mantle wedge. A stagnant forearc mantle wedge provides a stable and cold tectonic environment that is important for the petrological evolution and earthquake processes of subduction zones.


Geosphere ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 936-952 ◽  
Author(s):  
Simon M. Peacock

Abstract In the two decades since Subduction: Top to Bottom was published in 1996, improved analytical and numerical thermal-petrologic models of subduction zones have been constructed and evaluated against new seismological and geological observations. Advances in thermal modeling include a range of new approaches to incorporating shear (frictional, viscous) heating along the subduction interface and to simulating induced flow in the mantle wedge. Forearc heat-flux measurements constrain the apparent coefficient of friction (μ′) along the plate interface to <∼0.1, but the extent to which μ′ may vary between subduction zones remains challenging to discern owing to scatter in the heat-flux measurements and uncertainties in the magnitude and distribution of radiogenic heat production in the overriding crust. Flow in the mantle wedge and the resulting thermal structure depend on the rheology of variably hydrated mantle rocks and the depth at which the subducting slab becomes coupled to the overlying mantle wedge. Advances in petrologic modeling include the incorporation of sophisticated thermodynamic software packages into thermal models and the prediction of seismic velocities from mineralogic and petrologic models. Current thermal-petrologic models show very good agreement between the predicted location of metamorphic dehydration reactions and observed intermediate-depth earthquakes, and between the predicted location of the basalt-to-eclogite transition in subducting oceanic crust and observed landward-dipping, low-seismic-velocity layers. Exhumed high-pressure, low-temperature metamorphic rocks provide insight into subduction-zone temperatures, but important thermal parameters (e.g., convergence rate) are not well constrained, and metamorphic rocks exposed at the surface today may reflect relatively warm conditions in the past associated with subduction initiation or ridge subduction. We can anticipate additional advances in our understanding of subduction zones as a result of further testing of model predictions against geologic and geophysical observations, and of evaluating the importance of advective processes, such as diapirism and subduction-channel flow, that are not captured in hybrid kinematic-dynamic models of subduction zones but are observed in fully dynamical models under certain conditions.


Solid Earth ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 759-776 ◽  
Author(s):  
Alexis Plunder ◽  
Cédric Thieulot ◽  
Douwe J. J. van Hinsbergen

Abstract. The geotherm in subduction zones is thought to vary as a function of the subduction rate and the age of the subducting lithosphere. Along a single subduction zone the rate of subduction may strongly vary due to changes in the angle between the trench and the plate convergence vector, i.e., the subduction obliquity, due to trench curvature. We currently observe such curvature in, e.g., the Marianas, Chile and Aleutian trenches. Recently, strong along-strike variations in subduction obliquity were proposed to have caused a major temperature contrast between Cretaceous geological records of western and central Turkey. We test here whether first-order temperature variation in a subduction zone may be caused by variation in the trench geometry using simple thermo-kinematic finite-element 3-D numerical models. We prescribe the trench geometry by means of a simple mathematical function and compute the mantle flow in the mantle wedge by solving the equation of mass and momentum conservation. We then solve the energy conservation equation until steady state is reached. We analyze the results (i) in terms of mantle wedge flow with emphasis on the trench-parallel component and (ii) in terms of temperature along the plate interface by means of maps and the depth–temperature path at the interface. In our experiments, the effect of the trench curvature on the geotherm is substantial. A small obliquity yields a small but not negligible trench-parallel mantle flow, leading to differences of 30 °C along-strike of the model. Advected heat causes such temperature variations (linked to the magnitude of the trench-parallel component of velocity). With increasing obliquity, the trench-parallel component of the velocity consequently increases and the temperature variation reaches 200 °C along-strike. Finally, we discuss the implication of our simulations for the ubiquitous oblique systems that are observed on Earth and the limitations of our modeling approach. Lateral variations in plate sinking rate associated with curvature will further enhance this temperature contrast. We conclude that the synchronous metamorphic temperature contrast between central and western Turkey may well have resulted from reconstructed major variations in subduction obliquity.


1983 ◽  
Vol 88 (B7) ◽  
pp. 5815-5825 ◽  
Author(s):  
Yoshiyuki Tatsumi ◽  
Masanori Sakuyama ◽  
Hiroyuki Fukuyama ◽  
Ikuo Kushiro

2016 ◽  
Vol 17 (10) ◽  
pp. 4105-4127 ◽  
Author(s):  
Alexander Perrin ◽  
Saskia Goes ◽  
Julie Prytulak ◽  
D. Rhodri Davies ◽  
Cian Wilson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document