scholarly journals A Decade of Imaging Cellular Motility and Interaction Dynamics in the Immune System

Science ◽  
2012 ◽  
Vol 336 (6089) ◽  
pp. 1676-1681 ◽  
Author(s):  
Ronald N. Germain ◽  
Ellen A. Robey ◽  
Michael D. Cahalan

To mount an immune response, lymphocytes must recirculate between the blood and lymph nodes, recognize antigens upon contact with specialized presenting cells, proliferate to expand a small number of clonally relevant lymphocytes, differentiate to antibody-producing plasma cells or effector T cells, exit from lymph nodes, migrate to tissues, and engage in host-protective activities. All of these processes involve motility and cellular interactions—events that were hidden from view until recently. Introduced to immunology by three papers in this journal in 2002, in vivo live-cell imaging studies are revealing the behavior of cells mediating adaptive and innate immunity in diverse tissue environments, providing quantitative measurement of cellular motility, interactions, and response dynamics. Here, we review themes emerging from such studies and speculate on the future of immunoimaging.

2015 ◽  
Vol 44 (12) ◽  
pp. 5763-5770 ◽  
Author(s):  
Shyamaprosad Goswami ◽  
Krishnendu Aich ◽  
Sangita Das ◽  
Chitrangada Das Mukhopadhyay ◽  
Deblina Sarkar ◽  
...  

A new quinoline based sensor was developed and applied for the selective detection of Cd2+ both in vitro and in vivo.


2020 ◽  
Vol 343 ◽  
pp. 108808 ◽  
Author(s):  
Margarita Arango-Lievano ◽  
Yann Dromard ◽  
Pierre Fontanaud ◽  
Chrystel Lafont ◽  
Patrice Mollard ◽  
...  

2019 ◽  
Author(s):  
A. I. Curatolo ◽  
N. Zhou ◽  
Y. Zhao ◽  
C. Liu ◽  
A. Daerr ◽  
...  

Self-organization is a hallmark of all living systems [1]. In particular, coordinated cellular behavior, commonly orchestrated at the population level through reciprocal interactions among different cell species [2–4], regulates the spatial arrangement of specialized cell types to generate tissue patterning and form complex body layouts [5, 6]. The overwhelming complexity of living systems, however, makes deciphering the underlying mechanisms difficult and limits our knowledge of basic pattern-forming mechanism in vivo [7, 8]. A successful strategy is then to work with synthetic, engineered systems, in which cellular interactions can be more easily tailored and studied [9–13]. Here, we demonstrate a simple mechanism through which different populations of cells can self-organize in periodic patterns. Programmed population interactions are shown to lead to coordinated out-ofphase spatial oscillations of two engineered populations of Escherichia coli. Using a combination of experimental and theoretical approaches, we show how such patterns arise autonomously from reciprocal density-dependent activation of cellular motility between the two species, without the need of any preexisting positional or orientational cues. Moreover, by re-designing the interaction, the original out-of-phase spatial oscillation rhythm of the two populations can be accordingly turned into in-phase oscillations. The robustness and versatility of the underlying pattern-formation process suggest that it could both be generically encountered in nature, for instance in the complex bacterial ecosystems found in biofilms [14–16], and used to promote the mixing or demixing of active particles in a controlled way.


2019 ◽  
Vol 55 (33) ◽  
pp. 4841-4844 ◽  
Author(s):  
Guilin Chen ◽  
Zaicai Zhou ◽  
Hui Feng ◽  
Chenyan Zhang ◽  
Yifan Wang ◽  
...  

A molecular probe with aggregation-induced phosphorescence (AIP) properties for calcium ion-specific detection and imaging in vivo was designed.


1965 ◽  
Vol 49 (3) ◽  
pp. 471-478 ◽  
Author(s):  
Truls Brinck-Johnsen ◽  
Thomas F. Dougherly

ABSTRACT The effects of cortisol and ACTH in vivo on various mouse lymphatic tissues were studied, using the current techniques for isolation of adenine from nucleic acids and quantitative measurement, including chromatography, spectrophotometry and radioactive tracer methods. The incorporation of adenine-8-14C into both RNA and DNA of lymphatic tissues of intact mice was reduced following prolonged treatment with cortisol or ACTH. In the absence of the adrenals ACTH enhanced the incorporation of adenine-8-14C into the RNA of lymph nodes, spleen and thymus, although a clearcut effect on increased incorporation of the purine into DNA was limited to the spleen. It was concluded that ACTH has an extraadrenal effect on lymphatic tissues.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e62195 ◽  
Author(s):  
Oriol Gallego ◽  
Tanja Specht ◽  
Thorsten Brach ◽  
Arun Kumar ◽  
Anne-Claude Gavin ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0128332 ◽  
Author(s):  
Yoshikazu Ohno ◽  
Joji M. Otaki

2018 ◽  
Author(s):  
Livia V. Bayer ◽  
Omar S. Omar ◽  
Diana P. Bratu ◽  
Irina E. Catrina

ABSTRACTMolecular beacons are nucleic acid oligomers labeled with a fluorophore and a quencher that fold in a hairpin-shaped structure, which fluoresce only when bound to their target RNA. They are used for the visualization of endogenous mRNAs in live cells. Here, we report a Python program (PinMol) that designs molecular beacons best suited for live cell imaging by using structural information from secondary structures of the target RNA, predicted via energy minimization approaches. PinMol takes into account the accessibility of the targeted regions, as well as the inter- and intramolecular interactions of each selected probe. To demonstrate its applicability, we synthesized an oskar mRNA-specific molecular beacon (osk1236), which is selected by PinMol to target a more accessible region than a manually designed oskar-specific molecular beacon (osk2216). We previously demonstrated osk2216 to be efficient in detecting oskar mRNA in in vivo experiments. Here, we show that osk1236 outperformed osk2216 in live cell imaging experiments.


Sign in / Sign up

Export Citation Format

Share Document