Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology

Science ◽  
2015 ◽  
Vol 347 (6222) ◽  
pp. 659-664 ◽  
Author(s):  
Meaghan Creed ◽  
Vincent Jean Pascoli ◽  
Christian Lüscher

Circuit remodeling driven by pathological forms of synaptic plasticity underlies several psychiatric diseases, including addiction. Deep brain stimulation (DBS) has been applied to treat a number of neurological and psychiatric conditions, although its effects are transient and mediated by largely unknown mechanisms. Recently, optogenetic protocols that restore normal transmission at identified synapses in mice have provided proof of the idea that cocaine-adaptive behavior can be reversed in vivo. The most efficient protocol relies on the activation of metabotropic glutamate receptors, mGluRs, which depotentiates excitatory synaptic inputs onto dopamine D1 receptor medium-sized spiny neurons and normalizes drug-adaptive behavior. We discovered that acute low-frequency DBS, refined by selective blockade of dopamine D1 receptors, mimics optogenetic mGluR-dependent normalization of synaptic transmission. Consequently, there was a long-lasting abolishment of behavioral sensitization.

Author(s):  
Yingnan Nie ◽  
Xuanjun Guo ◽  
Xiao Li ◽  
Xinyi Geng ◽  
Yan Li ◽  
...  

Abstract Objective. Closed-loop deep brain stimulation (DBS) with neural feedback has shown great potential in improving the therapeutic effect and reducing side effects. However, the amplitude of stimulation artifacts is much larger than the local field potentials, which remains a bottleneck in developing a closed-loop stimulation strategy with varied parameters. Approach. We proposed an irregular sampling method for the real-time removal of stimulation artifacts. The artifact peaks were detected by applying a threshold to the raw recordings, and the samples within the contaminated period of the stimulation pulses were excluded and replaced with the interpolation of the samples prior to and after the stimulation artifact duration. This method was evaluated with both simulation signals and in vivo closed-loop DBS applications in Parkinsonian animal models. Main results. The irregular sampling method was able to remove the stimulation artifacts effectively with the simulation signals. The relative errors between the power spectral density of the recovered and true signals within a wide frequency band (2-150 Hz) were 2.14%, 3.93%, 7.22%, 7.97% and 6.25% for stimulation at 20 Hz, 60 Hz, 130 Hz, 180 Hz, and stimulation with variable low and high frequencies, respectively. This stimulation artifact removal method was verified in real-time closed-loop DBS application in vivo, and the artifacts were effectively removed during stimulation with frequency continuously changing from 130 Hz to 1 Hz and stimulation adaptive to beta oscillations. Significance. The proposed method provides an approach for real-time removal in closed-loop DBS applications, which is effective in stimulation with low frequency, high frequency, and variable frequency. This method can facilitate the development of more advanced closed-loop DBS strategies.


2021 ◽  
Vol 11 (5) ◽  
pp. 639
Author(s):  
David Bergeron ◽  
Sami Obaid ◽  
Marie-Pierre Fournier-Gosselin ◽  
Alain Bouthillier ◽  
Dang Khoa Nguyen

Introduction: To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. Methods: We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. Results: Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. Conclusion: In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.


Neurosignals ◽  
2013 ◽  
Vol 21 (1-2) ◽  
pp. 89-98 ◽  
Author(s):  
Gaia Giannicola ◽  
Manuela Rosa ◽  
Sara Marceglia ◽  
Emma Scelzo ◽  
Lorenzo Rossi ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Marta Casquero-Veiga ◽  
David García-García ◽  
Manuel Desco ◽  
María Luisa Soto-Montenegro

Deep brain stimulation (DBS) is a neurosurgery technique widely used in movement disorders, although its mechanism of action remains unclear. In fact, apart from the stimulation itself, the mechanical insertion of the electrode may play a crucial role. Here we aimed to distinguish between the insertional and the DBS effects on brain glucose metabolism. To this end, electrodes were implanted targeting the medial prefrontal cortex in five adult male Wistar rats. Positron Emission Tomography (PET) studies were performed before surgery (D0) and seven (D7) and nine days (D9) after that. DBS was applied during the 18FDG uptake of the D9 study. PET data were analysed with statistical parametric mapping. We found an electrode insertional effect in cortical areas, while DBS resulted in a more widespread metabolic pattern. The consequences of simultaneous electrode and DBS factors revealed a combination of both effects. Therefore, the insertion metabolic effects differed from the stimulation ones, which should be considered when assessing DBS protocols.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243438
Author(s):  
Hannah Ihme ◽  
Rainer K. W. Schwarting ◽  
Liana Melo-Thomas

Deep brain stimulation (DBS) of the colliculus inferior (IC) improves haloperidol-induced catalepsy and induces paradoxal kinesia in rats. Since the IC is part of the brain aversive system, DBS of this structure has long been related to aversive behavior in rats limiting its clinical use. This study aimed to improve intracollicular DBS parameters in order to avoid anxiogenic side effects while preserving motor improvements in rats. Catalepsy was induced by systemic haloperidol (0.5mg/kg) and after 60 min the bar test was performed during which a given rat received continuous (5 min, with or without pre-stimulation) or intermittent (5 x 1 min) DBS (30Hz, 200–600μA, pulse width 100μs). Only continuous DBS with pre-stimulation reduced catalepsy time. The rats were also submitted to the elevated plus maze (EPM) test and received either continuous stimulation with or without pre-stimulation, or sham treatment. Only rats receiving continuous DBS with pre-stimulation increased the time spent and the number of entries into the open arms of the EPM suggesting an anxiolytic effect. The present intracollicular DBS parameters induced motor improvements without any evidence of aversive behavior, pointing to the IC as an alternative DBS target to induce paradoxical kinesia improving motor deficits in parkinsonian patients.


2012 ◽  
Vol 71 (5) ◽  
pp. e11-e13 ◽  
Author(s):  
Jens Kuhn ◽  
Hildegard Janouschek ◽  
Mardjan Raptis ◽  
Steffen Rex ◽  
Doris Lenartz ◽  
...  

2018 ◽  
Vol 50 ◽  
pp. 150-151
Author(s):  
Marcelo D. Mendonça ◽  
Raquel Barbosa ◽  
Alexandra Seromenho-Santos ◽  
Carla Reizinho ◽  
Paulo Bugalho

2018 ◽  
Vol 20 (suppl_1) ◽  
pp. i11-i11
Author(s):  
Joshua Branter ◽  
Maria de los Angeles Estevez-Cebrero ◽  
Richard Grundy ◽  
Surajit Basu ◽  
Stuart Smith

Sign in / Sign up

Export Citation Format

Share Document