X-ray Diffraction to 302 Gigapascals: High-Pressure Crystal Structure of Cesium Iodide

Science ◽  
1989 ◽  
Vol 246 (4930) ◽  
pp. 649-651 ◽  
Author(s):  
H. K. MAO ◽  
R. J. HEMLEY ◽  
L. C. CHEN ◽  
J. F. SHU ◽  
L. W. FINGER ◽  
...  
2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1037 ◽  
Author(s):  
Sai Wang ◽  
Changzeng Fan

When processing single crystal X-ray diffraction datasets for twins of Al2Cu sample synthesized by the high-pressure sintering (HPS) method, we have clarified why the crystal structure of Al2Cu was incorrectly solved about a century ago. The structural relationships between all existing Al2Cu phases, including the Owen-, θ-, θ’-, and Ω-Al2Cu phases, were investigated and established based on a proposed pseudo Al2Cu phase. Two potential phases have been built up by adjusting the packing sequences of A/B layers of Al atoms that were inherent in all existing Al2Cu phases. The mechanical, thermal, and dynamical stability of two such novel phases and their electronic properties were investigated by first-principles calculations.


1998 ◽  
Vol 54 (6) ◽  
pp. 907-911 ◽  
Author(s):  
H. Hosomi ◽  
Y. Ito ◽  
S. Ohba

Dissymmetry of the photoproduct was induced by using a chiral substituent, (S)-methylphenylalanine, in the title compound {N-4-(2,4,6-triisopropylbenzoyl)benzoyl]-(S)-phenylalanine methyl ester (I)}. On irradiation with light from a 250 W ultra-high-pressure Hg lamp for 7 h through a long-pass filter, the photoreaction in a crystal was 100% complete without the loss of crystallinity. The crystal structures (I), before, and (II) {N-[4-(7-hydroxy-3,5-diisopropyl-8,8-dimethylbicyclo[4.2.0]octa-1,3,5-trien-7-yl)benzoyl]-(S)-phenylalanine methyl ester}, after photocyclization, have been determined by X-ray diffraction. For comparison, a crystal structure analysis has also been carried out for the photoproduct (III) of the 3′-COOMe derivative after recrystallization {methyl 3-(7-hydroxy-3,5-diisopropyl-8,8-dimethylbicyclo[4.2.0]octa-1,3,5-trien-7-yl)benzoate}. The dihedral angle between the central carbonyl plane and the triisopropylphenyl ring deviates from 90° by 10 (1)° in (I), which makes an imbalance in the intramolecular O(carbonyl)...H(methine) distances of the isopropyl groups at positions 2 and 6. The crystal structure of (II) indicates that the nearer methine H was predominantly abstracted by the carbonyl O atom in the reaction. The absolute configuration around the asymmetric C atom in the cyclobutenol ring of the product is S.


1999 ◽  
Vol 14 (3) ◽  
pp. 906-911 ◽  
Author(s):  
S. K. Bhaumik ◽  
C. Divakar ◽  
S. Usha Devi ◽  
A. K. Singh

Starting from elemental powders, simultaneous synthesis and compaction of SiC were conducted at 3 GPa pressure and temperatures in the range 2100–2900 K. The sintered compacts were characterized by x-ray diffraction, microhardness measurements, and microscopic studies. The efficiency of formation of SiC was dependent on the particle size of the silicon powder, crystallinity of the reactant carbon, molar ratio of silicon and carbon, and synthesis temperature and time. Carbon in excess of the stoichiometric amount was required to obtain compacts free from residual silicon. The SiC samples, with a Si: C molar ratio 1: 1.05, prepared at 2100 K for 300 s had a density and hardness of 3.21 g/cm3 (98.8% of theoretical density) and 22 GPa, respectively. The crystal structure of the SiC depended on the synthesis temperature. Pure β–SiC in the temperature range 2100–2500 K, and a mixture of α– and β–SiC above 2500 K were obtained. The β–SiC was highly crystalline and nearly defect-free.


Author(s):  
Davide Comboni ◽  
Tomasz Poreba ◽  
Francesco Pagliaro ◽  
Tommaso Battiston ◽  
Paolo Lotti ◽  
...  

The crystal structure of the high-pressure polymorph of meyerhofferite, ideally Ca2B6O6(OH)10·2(H2O), has been determined by means of single-crystal synchrotron X-ray diffraction data. Meyerhofferite undergoes a first-order isosymmetric phase transition to meyerhofferite-II, bracketed between 3.15 and 3.75 GPa, with a large volume discontinuity. The phase transition is marked by an increase in the coordination number of the boron B1 site, from III to IV, leading to a more interconnected and less compressible structure. The main structural differences between the two polymorphs and the P-induced deformation mechanisms at the atomic scale are discussed.


2014 ◽  
Vol 28 (25) ◽  
pp. 1450168 ◽  
Author(s):  
Nirup Bandaru ◽  
Ravhi S. Kumar ◽  
Jason Baker ◽  
Oliver Tschauner ◽  
Thomas Hartmann ◽  
...  

Structural behavior of bulk WS 2 under high pressure was investigated using synchrotron X-ray diffraction and diamond anvil cell up to 52 GPa along with high temperature X-ray diffraction and high pressure Raman spectroscopy analysis. The high pressure results obtained from X-ray diffraction and Raman analysis did not show any pressure induced structural phase transformations up to 52 GPa. The high temperature results show that the WS 2 crystal structure is stable upon heating up to 600°C. Furthermore, the powder X-ray diffraction obtained on shock subjected WS 2 to high pressures up to 10 GPa also did not reveal any structural changes. Our results suggest that even though WS 2 is less compressible than the isostructural MoS 2, its crystal structure is stable under static and dynamic compressions up to the experimental limit.


Sign in / Sign up

Export Citation Format

Share Document