DRUG RESEARCH: Legislators Propose a Registry to Track Clinical Trials From Start to Finish

Science ◽  
2004 ◽  
Vol 305 (5691) ◽  
pp. 1695-1695 ◽  
Author(s):  
J. Couzin
2019 ◽  
Vol 20 (6) ◽  
pp. 668-678 ◽  
Author(s):  
Min-Xia Su ◽  
Le-Le Zhang ◽  
Zhang-Jian Huang ◽  
Jia-Jie Shi ◽  
Jin-Jian Lu

Hypoxia, which occurs in most cancer cases, disrupts the efficacy of anticarcinogens. Fortunately, hypoxia itself is a potential target for cancer treatment. Hypoxia-activated prodrugs (HAPs) can be selectively activated by reductase under hypoxia. Some promising HAPs have been already achieved, and many clinical trials of HAPs in different types of cancer are ongoing. However, none of them has been approved in clinic to date. From the studies on HAPs began, some achievements are obtained but more challenges are put forward. In this paper, we reviewed the research progress of HAPs to discuss the strategies for HAPs development. According to the research status and results of these studies, administration pattern, reductase activity, and patient selection need to be taken into consideration to further improve the efficacy of existing HAPs. As the requirement of new drug research and development, design of optimal preclinical models and clinical trials are quite important in HAPs development, while different drug delivery systems and anticancer drugs with different mechanisms can be sources of novel HAPs.


Author(s):  
Kalina Andrysiak ◽  
Jacek Stępniewski ◽  
Józef Dulak

AbstractDevelopment of new drugs is of high interest for the field of cardiac and cardiovascular diseases, which are a dominant cause of death worldwide. Before being allowed to be used and distributed, every new potentially therapeutic compound must be strictly validated during preclinical and clinical trials. The preclinical studies usually involve the in vitro and in vivo evaluation. Due to the increasing reporting of discrepancy in drug effects in animal and humans and the requirement to reduce the number of animals used in research, improvement of in vitro models based on human cells is indispensable. Primary cardiac cells are difficult to access and maintain in cell culture for extensive experiments; therefore, the human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) became an excellent alternative. This technology enables a production of high number of patient- and disease-specific cardiomyocytes and other cardiac cell types for a large-scale research. The drug effects can be extensively evaluated in the context of electrophysiological responses with a use of well-established tools, such as multielectrode array (MEA), patch clamp, or calcium ion oscillation measurements. Cardiotoxicity, which is a common reason for withdrawing drugs from marketing or rejection at final stages of clinical trials, can be easily verified with a use of hiPSC-CM model providing a prediction of human-specific responses and higher safety of clinical trials involving patient cohort. Abovementioned studies can be performed using two-dimensional cell culture providing a high-throughput and relatively lower costs. On the other hand, more complex structures, such as engineered heart tissue, organoids, or spheroids, frequently applied as co-culture systems, represent more physiological conditions and higher maturation rate of hiPSC-derived cells. Furthermore, heart-on-a-chip technology has recently become an increasingly popular tool, as it implements controllable culture conditions, application of various stimulations and continuous parameters read-out. This paper is an overview of possible use of cardiomyocytes and other cardiac cell types derived from hiPSC as in vitro models of heart in drug research area prepared on the basis of latest scientific reports and providing thorough discussion regarding their advantages and limitations.


Therapies ◽  
2010 ◽  
Vol 65 (4) ◽  
pp. 317-322 ◽  
Author(s):  
Jehan-Michel Béhier ◽  
Jean-Charles Reynier ◽  
Pierre-Henri Bertoye ◽  
Muriel Vray ◽  
Béatrice Barraud ◽  
...  

Anaesthesia ◽  
2009 ◽  
Vol 64 (9) ◽  
pp. 984-989 ◽  
Author(s):  
E. Walker ◽  
M. C. Hankins ◽  
S. M. White

Author(s):  
D. C. Swartzendruber ◽  
Norma L. Idoyaga-Vargas

The radionuclide gallium-67 (67Ga) localizes preferentially but not specifically in many human and experimental soft-tissue tumors. Because of this localization, 67Ga is used in clinical trials to detect humar. cancers by external scintiscanning methods. However, the fact that 67Ga does not localize specifically in tumors requires for its eventual clinical usefulness a fuller understanding of the mechanisms that control its deposition in both malignant and normal cells. We have previously reported that 67Ga localizes in lysosomal-like bodies, notably, although not exclusively, in macrophages of the spocytaneous AKR thymoma. Further studies on the uptake of 67Ga by macrophages are needed to determine whether there are factors related to malignancy that might alter the localization of 67Ga in these cells and thus provide clues to discovering the mechanism of 67Ga localization in tumor tissue.


Sign in / Sign up

Export Citation Format

Share Document