Evolution of type C viral genes: origin of feline leukemia virus

Science ◽  
1975 ◽  
Vol 190 (4217) ◽  
pp. 886-888 ◽  
Author(s):  
R. Benveniste ◽  
C. Sherr ◽  
G. Todaro
Author(s):  
K. Maruyama ◽  
M. F. Miller ◽  
S. H. Wagner ◽  
L. Dmochowski

Many type C RNA tumor viruses can infect cells of different species. Following cross-species infection, these viruses are known to exhibit some altered properties. In an attempt to investigate host influence on properties of mammalian RNA tumor viruses, neonatal Wistar rats were inoculated with feline sarcoma virus of Snyder-Theilen strain. A transplantable tumor line designated as RT-FeSV was established from one of these induced tumors. Some syngeneic rats inoculated with RT-FeSV tumors which were passaged in rats less than 3 times developed precipitable serum antibodies to feline leukemia virus (FeLV).


Author(s):  
R. A. Al-Adhami ◽  
A. L. Chapman

Fujinaga et al reported MSV induced rat and hamster osteosarcoma which showed an occassional unusual bud in the rat induced tumors. Savage and Hackett and Hackett and Sylvester reported abnormal type C virus in UCLB cells derived from Balb/3t3 cells infected and transformed with MLV. They wer unable to demonstrate sarcoma virus activity. Fischinger and O‘Connor reported the infection of cat embryo cells by a centrifugally induced aggregate of murine sarcoma virus and feline leukemia virus designated as MSV(FelLV). This virus gave rise to a defective, focus forming virus which propagated in cat cells but not in mouse cells.In the present study the morphoiogy of the MSV(FelLV) virus obtained from Dr. Fischinger and maintained in our laboratory since 1970 will be reported. Feline embryo fibroblasts (established in our lab.) and Crandall feline kidney cells (Cutter-Haver-Lockhart, Shawnee, Kansas) were used in this study.


Blood ◽  
2005 ◽  
Vol 106 (1) ◽  
pp. 51-58 ◽  
Author(s):  
M. Lee Lucas ◽  
Nancy E. Seidel ◽  
Christopher D. Porada ◽  
John G. Quigley ◽  
Stacie M. Anderson ◽  
...  

Gene therapy for hematopoietic diseases has been hampered by the low frequency of transduction of human hematopoietic stem cells (HSCs) with retroviral vectors pseudotyped with amphotropic envelopes. We hypothesized that transduction could be increased by the use of retroviral vectors pseudotyped with envelopes that recognize more abundant cellular receptors. The levels of mRNA encoding the receptors of the feline retroviruses, RD114 and feline leukemia virus type C (FeLV-C), were significantly higher than the level of gibbon ape leukemia virus (GaLV) receptor mRNA in cells enriched for human HSCs (Lin– CD34+ CD38–). We cotransduced human peripheral blood CD34+ cells with equivalent numbers of FeLV-C and GALV or RD114 and GALV-pseudotyped retroviruses for injection into fetal sheep. Analysis of DNA from peripheral blood and bone marrow from recipient sheep demonstrated that FeLV-C– or RD114-pseudotyped vectors were present at significantly higher levels than GALV-pseudotyped vectors. Analysis of individual myeloid colonies demonstrated that retrovirus vectors with FeLV-C and RD114 pseudotypes were present at 1.5 to 1.6 copies per cell and were preferentially integrated near known genes We conclude that the more efficient transduction of human HSCs with either FeLV-C– or RD114-pseudotyped retroviral particles may improve gene transfer in human clinical trials.


Author(s):  
D.C. Hixson ◽  
J.C. Chan ◽  
J.M. Bowen ◽  
E.F. Walborg

Several years ago Karasaki (1) reported the production of type C virus particles by Novikoff ascites hepatocarcinoma cells. More recently, Weinstein (2) has reported the presence of type C virus particles in cell cultures derived from transplantable and primary hepatocellular carcinomas. To date, the biological function of these virus and their significance in chemically induced hepatocarcinogenesis are unknown. The present studies were initiated to determine a possible role for type C virus particles in chemically induced hepatocarcinogenesis. This communication describes results of studies on the biological and surface properties of type C virus associated with Novikoff hepatocarcinoma cells.Ecotropic and xenotropic murine leukemia virus (MuLV) activity in ascitic fluid of Novikoff tumor-bearing rats was assayed in murine sarcoma virus transformed S+L- mouse cells and S+L- mink cells, respectively. The presence of sarcoma virus activity was assayed in non-virus-producing normal rat kidney (NRK) cells. Ferritin conjugates of concanavalin A (Fer-Con wheat germ agglutinin (Fer-WGA), and Ricinus communis agglutinins I and II (Fer-RCAI and Fer-RCAII) were used to probe the structure and topography of saccharide determinants present on the viral envelope.


Author(s):  
L. Z. de Tkaczevski ◽  
E. de Harven ◽  
C. Friend

Despite extensive studies, the correlation between the morphology and pathogenicity of murine leukemia viruses (MLV) has not yet been clarified. The virus particles found in the plasma of leukemic mice belong to 2 distinct groups, 1 or 2% of them being enveloped A particles and the vast majority being of type C. It is generally believed that these 2 types of particles represent different phases in the development of the same virus. Particles of type A have been thought to be an earlier form of type C particles. One of the tissue culture lines established from Friend leukemia solid tumors has provided the material for the present study. The supernatant fluid of the line designated C-1A contains an almost pure population of A particles as illustrated in Figure 1. The ratio is, therefore, the reverse of what is unvariably observed in the plasma of leukemic mice where C particles predominate.


1975 ◽  
Vol 16 (3) ◽  
pp. 535-545 ◽  
Author(s):  
D A Brian ◽  
A R Thomason ◽  
F M Rottman ◽  
L F Velicer

Sign in / Sign up

Export Citation Format

Share Document