Mitoribosomal small subunit biogenesis in trypanosomes involves an extensive assembly machinery

Science ◽  
2019 ◽  
Vol 365 (6458) ◽  
pp. 1144-1149 ◽  
Author(s):  
Martin Saurer ◽  
David J. F. Ramrath ◽  
Moritz Niemann ◽  
Salvatore Calderaro ◽  
Céline Prange ◽  
...  

Mitochondrial ribosomes (mitoribosomes) are large ribonucleoprotein complexes that synthesize proteins encoded by the mitochondrial genome. An extensive cellular machinery responsible for ribosome assembly has been described only for eukaryotic cytosolic ribosomes. Here we report that the assembly of the small mitoribosomal subunit in Trypanosoma brucei involves a large number of factors and proceeds through the formation of assembly intermediates, which we analyzed by using cryo–electron microscopy. One of them is a 4-megadalton complex, referred to as the small subunit assemblosome, in which we identified 34 factors that interact with immature ribosomal RNA (rRNA) and recognize its functionally important regions. The assembly proceeds through large-scale conformational changes in rRNA coupled with successive incorporation of mitoribosomal proteins, providing an example for the complexity of the ribosomal assembly process in mitochondria.

2021 ◽  
Author(s):  
Xiaochen Chen ◽  
Lu Wang ◽  
Zhanyu Ding ◽  
Qianqian Cui ◽  
Li Han ◽  
...  

AbstractHuman calcium-sensing receptor (CaSR) is a G-protein-coupled receptor that maintains Ca2+ homeostasis in serum. Here, we present the cryo-electron microscopy structures of the CaSR in the inactive and active states. Complemented with previously reported crystal structures of CaSR extracellular domains, it suggests that there are three distinct conformations: inactive, intermediate and active state during the activation. We used a negative allosteric nanobody to stabilize the CaSR in the fully inactive state and found a new binding site for Ca2+ ion that acts as a composite agonist with L-amino acid to stabilize the closure of active Venus flytraps. Our data shows that the agonist binding leads to the compaction of the dimer, the proximity of the cysteine-rich domains, the large-scale transitions of 7-transmembrane domains, and the inter-and intrasubunit conformational changes of 7-transmembrane domains to accommodate the downstream transducers. Our results reveal the structural basis for activation mechanisms of the CaSR.


1991 ◽  
Vol 115 (3) ◽  
pp. 597-605 ◽  
Author(s):  
J Frank ◽  
P Penczek ◽  
R Grassucci ◽  
S Srivastava

A reconstruction, at 40 A, of the Escherichia coli ribosome imaged by cryo-electron microscopy, obtained from 303 projections by a single-particle method of reconstruction, shows the two subunits with unprecedented clarity. In the interior of the subunits, a complex distribution of higher mass density is recognized, which is attributed to ribosomal RNA. The masses corresponding to the 16S and 23S components are linked in the region of the platform of the small subunit. Thus the topography of the rRNA regions responsible for protein synthesis can be described.


Science ◽  
2021 ◽  
Vol 371 (6531) ◽  
pp. 846-849
Author(s):  
Yuzuru Itoh ◽  
Juni Andréll ◽  
Austin Choi ◽  
Uwe Richter ◽  
Priyanka Maiti ◽  
...  

Mitochondrial ribosomes (mitoribosomes) are tethered to the mitochondrial inner membrane to facilitate the cotranslational membrane insertion of the synthesized proteins. We report cryo–electron microscopy structures of human mitoribosomes with nascent polypeptide, bound to the insertase oxidase assembly 1–like (OXA1L) through three distinct contact sites. OXA1L binding is correlated with a series of conformational changes in the mitoribosomal large subunit that catalyze the delivery of newly synthesized polypeptides. The mechanism relies on the folding of mL45 inside the exit tunnel, forming two specific constriction sites that would limit helix formation of the nascent chain. A gap is formed between the exit and the membrane, making the newly synthesized proteins accessible. Our data elucidate the basis by which mitoribosomes interact with the OXA1L insertase to couple protein synthesis and membrane delivery.


2022 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Tom Dielforder ◽  
Christina Maria Braun ◽  
Fabian Hölzgen ◽  
Shuang Li ◽  
Mona Thiele ◽  
...  

The synthesis of ribosomes involves the correct folding of the pre-ribosomal RNA within pre-ribosomal particles. The first ribosomal precursor or small subunit processome assembles stepwise on the nascent transcript of the 35S gene. At the earlier stages, the pre-ribosomal particles undergo structural and compositional changes, resulting in heterogeneous populations of particles with highly flexible regions. Structural probing methods are suitable for resolving these structures and providing evidence about the architecture of ribonucleoprotein complexes. Our approach used MNase tethered to the assembly factors Nan1/Utp17, Utp10, Utp12, and Utp13, which among other factors, initiate the formation of the small subunit processome. Our results provide dynamic information about the folding of the pre-ribosomes by elucidating the relative organization of the 5′ETS and ITS1 regions within the 35S and U3 snoRNA around the C-terminal domains of Nan1/Utp17, Utp10, Utp12, and Utp13.


2020 ◽  
Vol 16 (11) ◽  
pp. e1008293
Author(s):  
Dylan Girodat ◽  
Avik K. Pati ◽  
Daniel S. Terry ◽  
Scott C. Blanchard ◽  
Karissa Y. Sanbonmatsu

Molecular Dynamics (MD) simulations seek to provide atomic-level insights into conformationally dynamic biological systems at experimentally relevant time resolutions, such as those afforded by single-molecule fluorescence measurements. However, limitations in the time scales of MD simulations and the time resolution of single-molecule measurements have challenged efforts to obtain overlapping temporal regimes required for close quantitative comparisons. Achieving such overlap has the potential to provide novel theories, hypotheses, and interpretations that can inform idealized experimental designs that maximize the detection of the desired reaction coordinate. Here, we report MD simulations at time scales overlapping with in vitro single-molecule Förster (fluorescence) resonance energy transfer (smFRET) measurements of the amino acid binding protein LIV-BPSS at sub-millisecond resolution. Computationally efficient all-atom structure-based simulations, calibrated against explicit solvent simulations, were employed for sampling multiple cycles of LIV-BPSS clamshell-like conformational changes on the time scale of seconds, examining the relationship between these events and those observed by smFRET. The MD simulations agree with the smFRET measurements and provide valuable information on local dynamics of fluorophores at their sites of attachment on LIV-BPSS and the correlations between fluorophore motions and large-scale conformational changes between LIV-BPSS domains. We further utilize the MD simulations to inform the interpretation of smFRET data, including Förster radius (R0) and fluorophore orientation factor (κ2) determinations. The approach we describe can be readily extended to distinct biochemical systems, allowing for the interpretation of any FRET system conjugated to protein or ribonucleoprotein complexes, including those with more conformational processes, as well as those implementing multi-color smFRET.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Mirjam Hunziker ◽  
Jonas Barandun ◽  
Olga Buzovetsky ◽  
Caitlin Steckler ◽  
Henrik Molina ◽  
...  

Eukaryotic ribosome biogenesis is initiated with the transcription of pre-ribosomal RNA at the 5’ external transcribed spacer, which directs the early association of assembly factors but is absent from the mature ribosome. The subsequent co-transcriptional association of ribosome assembly factors with pre-ribosomal RNA results in the formation of the small subunit processome. Here we show that stable rRNA domains of the small ribosomal subunit can independently recruit their own biogenesis factors in vivo. The final assembly and compaction of the small subunit processome requires the presence of the 5’ external transcribed spacer RNA and all ribosomal RNA domains. Additionally, our cryo-electron microscopy structure of the earliest nucleolar pre-ribosomal assembly - the 5’ external transcribed spacer ribonucleoprotein – provides a mechanism for how conformational changes in multi-protein complexes can be employed to regulate the accessibility of binding sites and therefore define the chronology of maturation events during early stages of ribosome assembly.


2020 ◽  
Vol 117 (47) ◽  
pp. 29851-29861 ◽  
Author(s):  
Heddy Soufari ◽  
Florent Waltz ◽  
Camila Parrot ◽  
Stéphanie Durrieu-Gaillard ◽  
Anthony Bochler ◽  
...  

Kinetoplastids are unicellular eukaryotic parasites responsible for such human pathologies as Chagas disease, sleeping sickness, and leishmaniasis. They have a single large mitochondrion, essential for the parasite survival. In kinetoplastid mitochondria, most of the molecular machineries and gene expression processes have significantly diverged and specialized, with an extreme example being their mitochondrial ribosomes. These large complexes are in charge of translating the few essential mRNAs encoded by mitochondrial genomes. Structural studies performed inTrypanosoma bruceialready highlighted the numerous peculiarities of these mitoribosomes and the maturation of their small subunit. However, several important aspects mainly related to the large subunit (LSU) remain elusive, such as the structure and maturation of its ribosomal RNA. Here we present a cryo-electron microscopy study of the protozoansLeishmania tarentolaeandTrypanosoma cruzimitoribosomes. For both species, we obtained the structure of their mature mitoribosomes, complete rRNA of the LSU, as well as previously unidentified ribosomal proteins. In addition, we introduce the structure of an LSU assembly intermediate in the presence of 16 identified maturation factors. These maturation factors act on both the intersubunit and the solvent sides of the LSU, where they refold and chemically modify the rRNA and prevent early translation before full maturation of the LSU.


2021 ◽  
Vol 22 (11) ◽  
pp. 5496
Author(s):  
Annalisa Pecoraro ◽  
Martina Pagano ◽  
Giulia Russo ◽  
Annapina Russo

Cytosolic ribosomes (cytoribosomes) are macromolecular ribonucleoprotein complexes that are assembled from ribosomal RNA and ribosomal proteins, which are essential for protein biosynthesis. Mitochondrial ribosomes (mitoribosomes) perform translation of the proteins essential for the oxidative phosphorylation system. The biogenesis of cytoribosomes and mitoribosomes includes ribosomal RNA processing, modification and binding to ribosomal proteins and is assisted by numerous biogenesis factors. This is a major energy-consuming process in the cell and, therefore, is highly coordinated and sensitive to several cellular stressors. In mitochondria, the regulation of mitoribosome biogenesis is essential for cellular respiration, a process linked to cell growth and proliferation. This review briefly overviews the key stages of cytosolic and mitochondrial ribosome biogenesis; summarizes the main steps of ribosome biogenesis alterations occurring during tumorigenesis, highlighting the changes in the expression level of cytosolic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs) in different types of tumors; focuses on the currently available information regarding the extra-ribosomal functions of CRPs and MRPs correlated to cancer; and discusses the role of CRPs and MRPs as biomarkers and/or molecular targets in cancer treatment.


Author(s):  
Yanxin Liu ◽  
Ming Sun ◽  
Alexander G. Myasnikov ◽  
Daniel Elnatan ◽  
Nicolas Delaeter ◽  
...  

AbstractHsp90 is a ubiquitous molecular chaperone that facilitates the folding and maturation of hundreds of cellular “client” proteins. The ATP-driven client maturation process is regulated by a large number of co-chaperones. Among them, Aha1 is the most potent activator of Hsp90 ATPase activity and thus dramatically affects Hsp90’s client proteins. To understand the Aha1 activation mechanism, we determined full-length Hsp90:Aha1 structures in six different states by cryo-electron microscopy, including nucleotide-free semi-closed, nucleotide-bound pre-hydrolysis, and semi-hydrolyzed states. Our structures demonstrate that the two Aha1 domains can each interact with Hsp90 in two different modes, uncovering a complex multistep activation mechanism. The results show that Aha1 accelerates the chemical step of ATP hydrolysis like a conventional enzyme, but most unusually, catalyzes the rate-limiting large-scale conformational changes of Hsp90 fundamentally required for ATP hydrolysis. Our work provides a structural framework to guide small molecule development targeting this critical modulator of client protein maturation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Margarita Belinite ◽  
Iskander Khusainov ◽  
Heddy Soufari ◽  
Stefano Marzi ◽  
Pascale Romby ◽  
...  

Cryo-electron microscopy is now used as a method of choice in structural biology for studying protein synthesis, a process mediated by the ribosome machinery. In order to achieve high-resolution structures using this approach, one needs to obtain homogeneous and stable samples, which requires optimization of ribosome purification in a species-dependent manner. This is especially critical for the bacterial small ribosomal subunit that tends to be unstable in the absence of ligands. Here, we report a protocol for purification of stable 30 S from the Gram-positive bacterium Staphylococcus aureus and its cryo-EM structures: in presence of spermidine at a resolution ranging between 3.4 and 3.6 Å and in its absence at 5.3 Å. Using biochemical characterization and cryo-EM, we demonstrate the importance of spermidine for stabilization of the 30 S via preserving favorable conformation of the helix 44.


Sign in / Sign up

Export Citation Format

Share Document