scholarly journals Comment on “Earth and Moon impact flux increased at the end of the Paleozoic”

Science ◽  
2019 ◽  
Vol 365 (6450) ◽  
pp. eaaw7471 ◽  
Author(s):  
Stefan Hergarten ◽  
Gerwin Wulf ◽  
Thomas Kenkmann

Mazrouei et al. (Reports, 18 January 2019, p. 253) found a nonuniform distribution of crater ages on Earth and the Moon, concluding that the impact flux increased about 290 million years ago. We show that the apparent increase on Earth can be explained by erosion, whereas that on the Moon may be an artifact of their calibration method.

2022 ◽  
Vol 579 ◽  
pp. 117362
Author(s):  
Anthony Lagain ◽  
Mikhail Kreslavsky ◽  
David Baratoux ◽  
Yebo Liu ◽  
Hadrien Devillepoix ◽  
...  
Keyword(s):  
The Moon ◽  

2020 ◽  
Author(s):  
Anthony Lagain ◽  
Misha Kreslavsky ◽  
Gretchen Benedix ◽  
David Baratoux ◽  
Phil Bland ◽  
...  

<p>Knowledge of collision rates through time and space is essential because meteoritic impact crater counting is the only way to determine the ages of surface geological units and processes on the solid bodies of our Solar System. All chronology models assume a constant size distribution of impactors and an exponential decay of the impact flux between 4 Ga and 2.5 Ga before the present followed by a constant rate over the last 2.5 Ga. These two assumptions are challenged by recent evidence for an increase of the impact flux on the Moon and the Earth and probably on Mars associated with a decoupling between the flux of small and large impactors over the last billion years. Here, using the results of an automatic crater detection algorithm, we investigate the evolution of the rate of formation of large impact craters (Dc ≥ 20km) on Mars and thus infer the evolution of the flux of large impactors (Di > 5km) from the size-frequency distribution of small craters superposed to the ejecta blankets of large ones.</p><p>The dating of large impact craters on Mars is limited by several factors such as the degradation of ejecta blankets and the retention rate of small craters superposed to their ejecta. We therefore focused on craters ≥20km in diameter exhibiting an ejecta blanket according to the crater database and located on a latitudinal band between ±35°. We then selected those whom their ejecta are not affected by volcanic/tectonic processes or by the formation of another large nearby impact crater. The final set includes 590 impact craters.</p><p>If one can argue the impact flux cannot be fully recorded for the last 4Ga due to resurfacing processes erasing progressively the ejecta blanket and large craters themselves, Hesperian and Noachian terrains within the 35° latitudinal band should nevertheless have retained all D≥20km craters over a portion of the Amazonian period. The CSFD of craters younger than 600Ma (113 craters) superposed to these terrains is consistent with the 600Ma isochron, supporting the fact that the entire population of craters ≥20km formed over the last 600 million years on this portion of the Martian surface has been counted completely. We therefore focused on the analysis of the impact rate evolution over this range of time from this crater sub-sample.</p><p>The formation of large impact craters is not homogeneously distributed over the time range investigated here. Our data suggest an inconsistency between the flux used to date each crater and the rate inferred from these datings, thus implying that the small and large body impact fluxes are decoupled from one another. We note also sharp peaks centered around 480, 280 and 100Ma. Preliminary statistical test show that 280Ma peak is marginally significant whereas the two others are too small to be statistically significant. This pattern would be consistent with other independent arguments for increased rate with similar intensity and timing on the Moon and Mars for which the causes are probably collisions and potentially formation of asteroid families within the main asteroid belt.</p>


Science ◽  
2019 ◽  
Vol 363 (6424) ◽  
pp. 253-257 ◽  
Author(s):  
Sara Mazrouei ◽  
Rebecca R. Ghent ◽  
William F. Bottke ◽  
Alex H. Parker ◽  
Thomas M. Gernon

The terrestrial impact crater record is commonly assumed to be biased, with erosion thought to eliminate older craters, even on stable terrains. Given that the same projectile population strikes Earth and the Moon, terrestrial selection effects can be quantified by using a method to date lunar craters with diameters greater than 10 kilometers and younger than 1 billion years. We found that the impact rate increased by a factor of 2.6 about 290 million years ago. The terrestrial crater record shows similar results, suggesting that the deficit of large terrestrial craters between 300 million and 650 million years ago relative to more recent times stems from a lower impact flux, not preservation bias. The almost complete absence of terrestrial craters older than 650 million years may indicate a massive global-scale erosion event near that time.


2021 ◽  
Author(s):  
Gianmario Merisio ◽  
Vittorio Franzese ◽  
Carmine Giordano ◽  
Mauro Massari ◽  
Pierluigi Di Lizia ◽  
...  

<p>Vast amounts of meteoroids and micrometeoroids continuously enter the Earth–Moon system and consequently become a potential threat. Lunar meteoroid impacts have caused a substantial change in the lunar surface and its properties. The Moon having no atmospheric blanket to protect itself, it is subjected to impacts from meteoroids ranging from a few kilograms to 10’s of grams each day. The high impact rate on the lunar surface has important implications for future human and robotic assets that will inhabit the Moon for significant periods of time. Therefore, a greater understanding of the meteoroid population in the cislunar environment is required for future exploration of the Moon.</p> <p>Moreover, refining current meteoroid models is of paramount importance for many applications. For instance, since meteoroids may travel dispersed along the orbit of their parent body, understanding meteoroids and associated phenomena can be valuable for the study of asteroids and comets themselves. Studying meteoroid impacts can help deepening the understanding of the spatial distribution of near-Earth objects in the Solar system. The study of dust particles can be also of interest because, together with the solar wind, they determine the space weather. Finally, it is critical to be able to predict impacts by relying on accurate impact flux models. That because the impact of small asteroids with Earth, even slightly larger than meteoroids, can cause severe damage.</p> <p>In this context, the Lunar Meteoroid Impacts Observer (LUMIO) is a CubeSat mission to observe, quantify, and characterise the meteoroid impacts by detecting their flashes on the lunar far-side. This complements the knowledge gathered by Earth-based observations of the lunar nearside, thus synthesising a global information on the lunar meteoroid environment. LUMIO envisages a 12U CubeSat form-factor placed in a halo orbit at Earth-Moon L2. The mission employs the LUMIO-Cam, an optical instrument capable of detecting light flashes in the visible spectrum. LUMIO is one of the two winner of ESA’s LUCE (Lunar CubeSat for Exploration) SysNova competition, and as such it is being considered by ESA for implementation in the near future. The Phase A study has been conducted in 2020 under ESA's General Support Technology Programme (GSTP) and successfully completed at the beginning of 2021, after an independent mission assessment performed by ESA’s CDF team.</p> <p>In this work, the latest results of the Phase A study of the LUMIO lunar CubeSat will be shown. An overview of the present-day LUMIO CubeSat A design will be given, with a focus on the latest developments. An overview on how LUMIO will impact the currently existing knowledge of meteoroid models will be given supported by high-fidelity simulated data.</p>


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


2019 ◽  
Vol 943 (1) ◽  
pp. 68-75
Author(s):  
S.G. Pugacheva ◽  
E.A. Feoktistova ◽  
V.V. Shevchenko

The article presents the results of astrophysical studies of the Moon’s reflected and intrinsic radiation. We studied the intensity of the Moon’s infrared radiation and, thus, carried out a detailed research of the brightness temperature of the Moon’s visible disc, estimated the thermal inertia of the coating substance by the rate of its surface cooling, and the degree of the lunar soil fragmentation. Polarimetric, colorimetric and spectrophotometric measurements of the reflected radiation intensity were carried out at different wavelengths. In the article, we present maps prepared based on our measurement results. We conducted theresearch of the unique South Pole – Aitken basin (SPA). The altitude profiles of the Apollo-11 and Zond-8 spacecrafts and the data of laser altimeters of the Apollo-16 and Apollo-15 spacecrafts were used as the main material. Basing upon this data we prepared a hypsometric map of SPA-basing global relief structure. A surface topography map of the Moon’s Southern Hemisphere is given in the article. The topography model of the SPA topography surface shows displacement centers of the altitude topographic rims from the central rim. Basing upon the detailed study of the basin’s topography as well as its “depth-diameter” ratio we suggest that the basin originated from the impact of a giant cometary body from the Orta Cloud. In our works, we consider the Moon as a part of the Earth’s space infrastructure. High growth rates of the Earth’s population, irrational nature management will cause deterioration of scarce natural resources in the near future. In our article, we present maps of the natural resources on the Moon pointing out the most promising regions of thorium, iron, and titanium. Probably in 20 or 40 years a critical mining level of gold, diamonds, zinc, platinum and other vital rocks and metals will be missing on the Earth.


2021 ◽  
Vol 13 (6) ◽  
pp. 1087
Author(s):  
Yiren Chang ◽  
Zhiyong Xiao ◽  
Yang Liu ◽  
Jun Cui

Self-secondaries are a population of background secondaries, and they have been observed on top of impact melt and ballistically emplaced ejecta deposits on various planetary bodies. Self-secondaries are formed by impacts of sub-vertically launched ejecta, but the launch mechanism is not confirmed. The potential threat of self-secondaries to the theoretical and applicable reliability of crater chronology has been noted, but not constrained. Hitherto discovered self-secondaries were located around complex impact craters, but their potential existence around simple craters has not been discovered. Here we report the first discovery of self-secondaries around lunar cold spot craters, which are an extremely young population of simple craters formed within the past ~1 million years on the Moon. Self-secondaries are widespread on layers of cascading flow-like ejecta deposits around cold spot craters. The spatial density of self-secondaries dwarfs that of potential primary craters. The spatial distribution of self-secondaries is highly heterogeneous across the ejecta deposits. With respect to the impactor trajectory that formed cold spot craters, self-secondaries formed at the downrange of the ejecta deposits have the largest spatial density, while those at the uprange have the smallest density. This density pattern holds for all cold spot craters that were formed by non-vertical impacts, but self-secondaries do not exhibit other systematic density variations at different radial distances or at other azimuths with respect to the impactor trajectory. Among known mechanics of ejecting materials to the exterior of impact craters, impact spallation is the most likely scenario to account for the required large ejection velocities and angles to form self-secondaries. The production population of self-secondaries is estimated based on the highly diverse crater size-frequency distributions across the ejecta deposits of cold spot craters. For a better understanding of the impact history on the Moon, a systematic investigation for the effect of self-secondaries on lunar crater chronology is required.


Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 149 ◽  
Author(s):  
Zifeng Lu ◽  
Jinghang Zhang ◽  
Hua Liu ◽  
Jialin Xu ◽  
Jinhuan Li

In the Hadamard transform (HT) near-infrared (NIR) spectrometer, there are defects that can create a nonuniform distribution of spectral energy, significantly influencing the absorbance of the whole spectrum, generating stray light, and making the signal-to-noise ratio (SNR) of the spectrum inconsistent. To address this issue and improve the performance of the digital micromirror device (DMD) Hadamard transform near-infrared spectrometer, a split waveband scan mode is proposed to mitigate the impact of the stray light, and a new Hadamard mask of variable-width stripes is put forward to improve the SNR of the spectrometer. The results of the simulations and experiments indicate that by the new scan mode and Hadamard mask, the influence of stray light is restrained and reduced. In addition, the SNR of the spectrometer also is increased.


2013 ◽  
Vol 79 (4) ◽  
pp. 405-411 ◽  
Author(s):  
SERGEY I. POPEL ◽  
LEV M. ZELENYI

AbstractFrom the Apollo era of exploration, it was discovered that sunlight was scattered at the terminators giving rise to “horizon glow” and “streamers” above the lunar surface. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. A renaissance is being observed currently in investigations of the Moon. The Luna-Glob and Luna-Resource missions (the latter jointly with India) are being prepared in Russia. Some of these missions will include investigations of lunar dust. Here we discuss the future experimental investigations of lunar dust within the missions of Luna-Glob and Luna-Resource. We consider the dusty plasma system over the lunar surface and determine the maximum height of dust rise. We describe mechanisms of formation of the dusty plasma system over the Moon and its main properties, determine distributions of electrons and dust over the lunar surface, and show a possibility of rising dust particles over the surface of the illuminated part of the Moon in the entire range of lunar latitudes. Finally, we discuss the effect of condensation of micrometeoriod substance during the expansion of the impact plume and show that this effect is important from the viewpoint of explanation of dust particle rise to high altitudes in addition to the dusty plasma effects.


Sign in / Sign up

Export Citation Format

Share Document