scholarly journals Cross-reactivity between tumor MHC class I–restricted antigens and an enterococcal bacteriophage

Science ◽  
2020 ◽  
Vol 369 (6506) ◽  
pp. 936-942 ◽  
Author(s):  
Aurélie Fluckiger ◽  
Romain Daillère ◽  
Mohamed Sassi ◽  
Barbara Susanne Sixt ◽  
Peng Liu ◽  
...  

Intestinal microbiota have been proposed to induce commensal-specific memory T cells that cross-react with tumor-associated antigens. We identified major histocompatibility complex (MHC) class I–binding epitopes in the tail length tape measure protein (TMP) of a prophage found in the genome of the bacteriophage Enterococcus hirae. Mice bearing E. hirae harboring this prophage mounted a TMP-specific H-2Kb–restricted CD8+ T lymphocyte response upon immunotherapy with cyclophosphamide or anti–PD-1 antibodies. Administration of bacterial strains engineered to express the TMP epitope improved immunotherapy in mice. In renal and lung cancer patients, the presence of the enterococcal prophage in stools and expression of a TMP–cross-reactive antigen by tumors correlated with long-term benefit of PD-1 blockade therapy. In melanoma patients, T cell clones recognizing naturally processed cancer antigens that are cross-reactive with microbial peptides were detected.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1330-1330
Author(s):  
Sanja Stevanovic ◽  
Bart Nijmeijer ◽  
Marianke LJ Van Schie ◽  
Roelof Willemze ◽  
Marieke Griffioen ◽  
...  

Abstract Abstract 1330 Poster Board I-352 Immunodeficient mice inoculated with human leukemia can be used as a model to investigate Graft-versus-Leukemia (GvL) effects of donor lymphocyte infusions (DLIs). In addition to GvL reactivity, treatment with DLI induces xenogeneic Graft-versus-Host Disease (GvHD) in mice, characterized by pancytopenia and weight loss. In patients treated with DLI for relapsed or residual leukemia after allogeneic stem cell transplantation, immune responses against non-leukemic cells may also cause GvHD. It has been suggested that GvL reactivity and GvHD, which co-develop in vivo, can be separated and that distinct T cells exist with the specific capacity to mediate GvL reactivity or GvHD. Since adoptive T cell transfer models that allow analysis of separation of GvL and GvHD are rare, we aimed to establish whether GvL reactivity and xenogeneic GvHD could be separated using our model of human leukemia-engrafted NOD/scid mouse after treatment with human donor T cells. In this study, non-conditioned NOD/scid mice engrafted with primary human acute lymphoblastic leukemic cells were treated with CD3+ DLI. Established tumors were effectively eliminated by emerging human T cells, but also induced xenogeneic GvHD. Flowcytometric analysis demonstrated that the majority of emerging CD8+ and CD4+ T cells were activated (HLA-DR+) and expressed an effector memory phenotype (CD45RA-CD45RO+CCR7-). To investigate whether GvL reactivity and xenogeneic GvHD were mediated by the same T cells showing reactivity against both human leukemic and murine cells, or displaying distinct reactivity against human leukemic and murine cells, we clonally isolated and characterized the T cells during the GvL response and xenogeneic GvHD. T cell clones were analyzed for reactivity against primary human leukemic cells and primary NOD/scid hematopoietic (BM and spleen cells) and non-hematopoietic (skin fibroblasts) cells in IFN-g ELISA. Isolated CD8+ and CD4+ T cell clones were shown to recognize either human leukemic or murine cells, indicating that GvL response and xenogeneic GvHD were mediated by different human T cells. Flowcytometric analysis demonstrated that all BM and spleen cells expressed MHC class I, whereas only 1-3 % of the cells were MHC class II +. Primary skin fibroblasts displayed low MHC class I and completely lacked MHC class II expression. Xeno-reactive CD8+ T cell clones were shown to recognize all MHC class I + target cells and xeno-reactive CD4+ T cells clones displayed reactivity only against MHC class II + target cells. To determine the MHC restriction of xeno-reactive T cell clones, NOD/scid bone marrow (BM) derived dendritic cells (DC) expressing high levels of murine MHC class I and class II were tested for T cell recognition in the presence or absence of murine MHC class I and class II monoclonal antibodies in IFN-g ELISA. Xeno-reactive CD8+ T cell clones were shown to be MHC class I (H-2Kd or H-2Db) restricted, whereas xeno-reactive CD4+ T cell clones were MHC class II (I-Ag7) restricted, indicating that xeno-reactivity reflects genuine human T cell response directed against allo-antigens present on murine cells. Despite production of high levels of IFN-gamma, xeno-reactive CD8+ and CD4+ T cell clones failed to exert cytolytic activity against murine DC, as determined in a 51Cr-release cytotoxicity assay. Absence of cytolysis by CD8+ T cell clones, which are generally considered as potent effector cells, may be explained by low avidity interaction between human T cells and murine DC, since flowcytometric analysis revealed sub-optimal activation of T cells as measured by CD137 expression and T cell receptor downregulation upon co-culture with murine DC, and therefore these results indicate that xenogeneic GvHD in this model is likely to be mediated by cytokines. In conclusion, in leukemia-engrafted NOD/scid mice treated with CD3+ DLI, we show that GvL reactivity and xenogeneic GvHD are mediated by separate human T cells with distinct specificities. All xeno-reactive T cell clones showed genuine recognition of MHC class I or class II associated allo-antigens on murine cells similar as GvHD-inducing human T cells. These data suggest that our NOD/scid mouse model of human acute leukemia may be valuable for studying the effectiveness and specificity of selectively enriched or depleted T cells for adoptive immunotherapy. Disclosures: No relevant conflicts of interest to declare.


2003 ◽  
Vol 11 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Julie A. Margenthaler ◽  
Keith Landeros ◽  
Masaaki Kataoka ◽  
M.Wayne Flye

2008 ◽  
Vol 123 (3) ◽  
pp. 609-615 ◽  
Author(s):  
Inge S. van Houdt ◽  
Berbel J.R. Sluijter ◽  
Laura M. Moesbergen ◽  
Wim M. Vos ◽  
Tanja D. de Gruijl ◽  
...  

2010 ◽  
Vol 184 (4) ◽  
pp. 1757-1764 ◽  
Author(s):  
Yakup Tanriver ◽  
Kulachelvy Ratnasothy ◽  
R. Pat Bucy ◽  
Giovanna Lombardi ◽  
Robert Lechler

2004 ◽  
Vol 17 (8) ◽  
pp. 458-462
Author(s):  
Bernd M. Spriewald ◽  
Stephan M. Ensminger ◽  
Suzanne Jenkins ◽  
Peter J. Morris ◽  
Kathryn J. Wood

Blood ◽  
2004 ◽  
Vol 104 (3) ◽  
pp. 873-880 ◽  
Author(s):  
Yiming Huang ◽  
Francine Rezzoug ◽  
Paula M. Chilton ◽  
H. Leighton Grimes ◽  
Daniel E. Cramer ◽  
...  

AbstractThe events that regulate engraftment and long-term repopulating ability of hematopoietic stem cells (HSCs) after transplantation are not well defined. We report for the first time that major histocompatibility complex (MHC) class I K plays a critical role in HSC engraftment via interaction with recipient natural killer (NK) cells. Durable engraftment of purified HSCs requires MHC class I K matching between HSC donor and recipient. In the absence of MHC class I K matching, HSCs exhibit impaired long-term engraftment (P = .01). Dependence on MHC class I K matching is eliminated in B6 beige mice that lack NK cell function, as well as in wild-type mice depleted of NK cells, implicating a possible regulatory role of NK cells for HSC engraftment. The coadministration of CD8+/T-cell receptor–negative (TCR-) graft facilitating cells (FCs) matched at MHC class I K to the HSC donor overcomes the requirement for MHC class I K matching between HSCs and recipient. These data demonstrate that FCs inhibit NK cell effects on the HSCs. Notably, FCs do not suppress the cytotoxic activity of activated NK cells. Enhanced green fluorescent protein–positive (EGFP+) FCs persist for one month following allogeneic transplantation, making cold target inhibition an unlikely mechanism. Therefore, MHC class I may play a critical role in the initiating events that dictate HSC engraftment and/or NK-mediated rejection following allogeneic transplantation.


Sign in / Sign up

Export Citation Format

Share Document