Barcoded microbial system for high-resolution object provenance

Science ◽  
2020 ◽  
Vol 368 (6495) ◽  
pp. 1135-1140 ◽  
Author(s):  
Jason Qian ◽  
Zhi-xiang Lu ◽  
Christopher P. Mancuso ◽  
Han-Ying Jhuang ◽  
Rocío del Carmen Barajas-Ornelas ◽  
...  

Determining where an object has been is a fundamental challenge for human health, commerce, and food safety. Location-specific microbes in principle offer a cheap and sensitive way to determine object provenance. We created a synthetic, scalable microbial spore system that identifies object provenance in under 1 hour at meter-scale resolution and near single-spore sensitivity and can be safely introduced into and recovered from the environment. This system solves the key challenges in object provenance: persistence in the environment, scalability, rapid and facile decoding, and biocontainment. Our system is compatible with SHERLOCK, a Cas13a RNA-guided nucleic acid detection assay, facilitating its implementation in a wide range of applications.

Author(s):  
Jason Qian ◽  
Zhi-xiang Lu ◽  
Christopher P. Mancuso ◽  
Han-Ying Jhuang ◽  
Rocío del Carmen Barajas-Ornelas ◽  
...  

AbstractMapping where an object has been is a fundamental challenge for human health, commerce, and food safety. Location-specific microbes offers the potential to cheaply and sensitively determine object provenance. We created a synthetic, scalable microbial spore system that identifies object provenance in under one hour at meter-scale resolution and near single spore sensitivity, and that can be safely introduced into and recovered from the environment. This system solves the key challenges in object provenance: persistence in the environment, scalability, rapid and facile decoding, and biocontainment. Our system is compatible with SHERLOCK, facilitating its implementation in a wide range of applications.


Author(s):  
B. A. Hamkalo ◽  
Elizabeth R. Unger

This symposium brings together several approaches for the detection of specific nucleic acid sequences that have potential applications at the histochemical level.Trask et al. report on the use of fluorescence in situ hybridization (FISH) techniques to study the arrangement of DNA sequences in normal and diseaserelated chromosomes. The sites of specific DNA sequences can be fluorescently tagged. Different sequences can be labeled with different fluorochromes so that their arrangement can be studied using fluorescence microscopy. The distances between points on the same or different chromosomes can be determined in a large number of interphase nuclei or metaphase chromosomes. A variety of probe types, ranging from single-copy sequences to highly repeated sequences can be employed.Hamkalo and co-workers have used non-radioactive methods at the EM level for the detection of nucleic acid sequences by in situ hybridization. Analysis of metaphase chromosomes by electron microscopy allows for high resolution mapping of chromosomes. A variety of labelling procedures have been employed to illustrate the utility of high resolution nucleic acid sequence mapping in these preparations.


2020 ◽  
Author(s):  
Eduardo Nogueira Cunha ◽  
Maria Fernanda Bezerra de Souza ◽  
Daniel Carlos Ferreira Lanza ◽  
João Paulo Matos Santos Lima

ABSTRACTNucleic acid detection by electrophoresis is still a quick and accessible technique for many diagnosis methods, primarily at research laboratories or at the point of care units. Standard protocols detect DNA/RNA molecules through specific bound chemical dyes using a UV-transilluminator or UV-photo documentation system. However, the acquisition costs and availability of these devices, mainly the ones with photography and internet connection capabilities, can be prohibitive, especially in developing countries public health units. Also, ultraviolet radiation is a common additional risk factor to professionals that use electrophoresis-based nucleic acid detection. With that in mind, this work describes the development of a low-cost DNA/RNA detection smart system capable of obtaining qualitative and semi-quantitative data from gel analysis. The proposed device explores the visible light absorption range of commonly used DNA/RNA dyes using readily available parts, and simple manufacturing processes, such as light-emitting diodes (LEDs) and 3D impression. By applying IoT techniques, our system covers a wide range of color spectrum in order to detect bands from various commercially used dyes, using Bluetooth communication and a smartphone for hardware control, image capturing, and sharing. The project also enables process scalability and has low manufacturing and maintenance costs. The use of LEDs at the visible spectrum can achieve very reproducible images, providing a high potential for rapid and point-of-care diagnostics as well as applications in several fields such as healthcare, agriculture, and aquaculture.


Author(s):  
Lu Guo ◽  
Xuehan Sun ◽  
Xinge Wang ◽  
Chen Liang ◽  
Haiping Jiang ◽  
...  

AbstractThe novel coronavirus (CoV) disease termed COVID-19 (Coronavirus Disease-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) is causing a massive pandemic worldwide, threatening public health systems across the globe. During this ongoing COVID-19 outbreak, nucleic acid detection has played an important role in early diagnosis. Here we report a SARS-CoV-2 detection protocol using a CRISPR-based CRISPR diagnostic platform - CDetection (Cas12b-mediated DNA detection). By combining sample treatment protocols and nucleic acid amplification methods with CDetection, we have established an integrated viral nucleic acid detection platform - CASdetec (CRISPR-assisted detection). The detection limit of CASdetec for SARS-CoV-2 pseudovirus is 1 × 104 copies/mL, with no cross reactivity observed. Our assay design and optimization process can provide guidance for future CRISPR-based nucleic acid detection assay development and optimization.


2021 ◽  
Author(s):  
Ekaterina Kropocheva ◽  
Anton Kuzmenko ◽  
Alexei A. Aravin ◽  
Daria Esyunina ◽  
Andrey Kulbachinskiy

ABSTRACTArgonaute proteins are programmable nucleases that are found in both eukaryotes and prokaryotes and provide defense against invading genetic elements. Although some prokaryotic Argonautes (pAgos) were shown to recognize RNA targets in vitro, the majority of studied pAgos have strict specificity toward DNA, which limits their practical use in RNA-centric applications. Here, we describe a unique KmAgo nuclease from the mesophilic bacterium Kurthia massiliensis that can be programmed with either DNA or RNA guides and can precisely cleave both DNA and RNA targets. KmAgo preferentially binds 16-20 nt long 5′-phosphorylated guide molecules with no strict specificity for their sequence and is active in a wide range of temperatures. In bacterial cells, KmAgo is loaded with small DNAs with no obvious sequence preferences suggesting that it can uniformly target genomic sequences. Target cleavage by KmAgo depends on the formation of secondary structure indicating that KmAgo can be used for structural probing of RNA targets. Mismatches between the guide and target sequences greatly affect the efficiency and precision of target cleavage, depending on the mismatch position and the nature of the reacting nucleic acid. These properties of KmAgo open the way for its use for highly specific nucleic acid detection and cleavage.


The Analyst ◽  
2021 ◽  
Author(s):  
Sidhartha Jain ◽  
David S. Dandy ◽  
Brian Geiss ◽  
Charles Henry

Sensitive, reliable and cost-effective detection of pathogens has wide ranging applications in clinical diagnostics and therapeutics, water and food safety, environmental monitoring, biosafety and epidemiology. Nucleic acid amplification tests (NAATs)...


2014 ◽  
Vol 13 (4) ◽  
pp. 551-577 ◽  
Author(s):  
Siele Ceuppens ◽  
Dan Li ◽  
Mieke Uyttendaele ◽  
Pierre Renault ◽  
Paul Ross ◽  
...  

2022 ◽  
Author(s):  
Ying Tang ◽  
Yiqin Wang ◽  
Yuchang Li ◽  
Huai Zhao ◽  
Sen Zhang ◽  
...  

Author(s):  
T. Miyokawa ◽  
S. Norioka ◽  
S. Goto

Field emission SEMs (FE-SEMs) are becoming popular due to their high resolution needs. In the field of semiconductor product, it is demanded to use the low accelerating voltage FE-SEM to avoid the electron irradiation damage and the electron charging up on samples. However the accelerating voltage of usual SEM with FE-gun is limited until 1 kV, which is not enough small for the present demands, because the virtual source goes far from the tip in lower accelerating voltages. This virtual source position depends on the shape of the electrostatic lens. So, we investigated several types of electrostatic lenses to be applicable to the lower accelerating voltage. In the result, it is found a field emission gun with a conical anode is effectively applied for a wide range of low accelerating voltages.A field emission gun usually consists of a field emission tip (cold cathode) and the Butler type electrostatic lens.


Author(s):  
O.L. Krivanek ◽  
M.L. Leber

Three-fold astigmatism resembles regular astigmatism, but it has 3-fold rather than 2-fold symmetry. Its contribution to the aberration function χ(q) can be written as:where A3 is the coefficient of 3-fold astigmatism, λ is the electron wavelength, q is the spatial frequency, ϕ the azimuthal angle (ϕ = tan-1 (qy/qx)), and ϕ3 the direction of the astigmatism.Three-fold astigmatism is responsible for the “star of Mercedes” aberration figure that one obtains from intermediate lenses once their two-fold astigmatism has been corrected. Its effects have been observed when the beam is tilted in a hollow cone over a wide range of angles, and there is evidence for it in high resolution images of a small probe obtained in a field emission gun TEM/STEM instrument. It was also expected to be a major aberration in sextupole-based Cs correctors, and ways were being developed for dealing with it on Cs-corrected STEMs.


Sign in / Sign up

Export Citation Format

Share Document