scholarly journals A low-cost smart system for electrophoresis-based nucleic acids detection at the visible spectrum

2020 ◽  
Author(s):  
Eduardo Nogueira Cunha ◽  
Maria Fernanda Bezerra de Souza ◽  
Daniel Carlos Ferreira Lanza ◽  
João Paulo Matos Santos Lima

ABSTRACTNucleic acid detection by electrophoresis is still a quick and accessible technique for many diagnosis methods, primarily at research laboratories or at the point of care units. Standard protocols detect DNA/RNA molecules through specific bound chemical dyes using a UV-transilluminator or UV-photo documentation system. However, the acquisition costs and availability of these devices, mainly the ones with photography and internet connection capabilities, can be prohibitive, especially in developing countries public health units. Also, ultraviolet radiation is a common additional risk factor to professionals that use electrophoresis-based nucleic acid detection. With that in mind, this work describes the development of a low-cost DNA/RNA detection smart system capable of obtaining qualitative and semi-quantitative data from gel analysis. The proposed device explores the visible light absorption range of commonly used DNA/RNA dyes using readily available parts, and simple manufacturing processes, such as light-emitting diodes (LEDs) and 3D impression. By applying IoT techniques, our system covers a wide range of color spectrum in order to detect bands from various commercially used dyes, using Bluetooth communication and a smartphone for hardware control, image capturing, and sharing. The project also enables process scalability and has low manufacturing and maintenance costs. The use of LEDs at the visible spectrum can achieve very reproducible images, providing a high potential for rapid and point-of-care diagnostics as well as applications in several fields such as healthcare, agriculture, and aquaculture.

2019 ◽  
Author(s):  
Florian Katzmeier ◽  
Lukas Aufinger ◽  
Aurore Dupin ◽  
Jorge Quinteiro ◽  
Matthias Lenz ◽  
...  

AbstractPoint-of-care testing (POCT) in low-resource settings requires tools that can operate independent of typical laboratory infrastructure. Due to its favorable signal-to-background ratio, a wide variety of biomedical tests utilize fluorescence as a readout. However, fluorescence techniques often require expensive or complex instrumentation and can be difficult to adapt for POCT. To address this issue, we developed a pocket-sized fluorescence detector costing less than $15 that is easy to manufacture and can operate in low-resource settings. It is built from standard electronic components, including an LED and a light dependent resistor, filter foils and 3D printed parts, and reliably detected less than 10 nM fluorescein concentrations (with a lower limit of detection of ≈6.8 nM), which is sufficient to follow typical biochemical reactions used in POCT applications. All assays are conducted on filter paper, which allows for a flat detector architecture to improve signal collection. We validate the device by quantifying in vitro RNA transcription and also demonstrate sequence-specific detection of target RNAs in the nanomolar range using a Cas13a-based fluorescence assay. Cas13a is a RNA-guided, RNA-targeting CRISPR effector with promiscuous RNase activity upon recognition of its RNA target. Cas13a sensing is highly specific and adaptable and in combination with our detector represents a promising approach for nucleic acid POCT. Furthermore, our open-source device architecture could be a valuable educational tool that integrates hardware, software and biochemistry concepts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Evan Amalfitano ◽  
Margot Karlikow ◽  
Masoud Norouzi ◽  
Katariina Jaenes ◽  
Seray Cicek ◽  
...  

AbstractRecent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2.


2019 ◽  
Vol 11 (2) ◽  
pp. 200-204 ◽  
Author(s):  
Lin Tan ◽  
Liu Xu ◽  
Jin-Wen Liu ◽  
Li-Juan Tang ◽  
Hao Tang ◽  
...  

Isothermal amplification techniques for nucleic acid detection have drawn increasing interest recently due to the simplicity and low-cost of instruments.


Science ◽  
2020 ◽  
Vol 368 (6495) ◽  
pp. 1135-1140 ◽  
Author(s):  
Jason Qian ◽  
Zhi-xiang Lu ◽  
Christopher P. Mancuso ◽  
Han-Ying Jhuang ◽  
Rocío del Carmen Barajas-Ornelas ◽  
...  

Determining where an object has been is a fundamental challenge for human health, commerce, and food safety. Location-specific microbes in principle offer a cheap and sensitive way to determine object provenance. We created a synthetic, scalable microbial spore system that identifies object provenance in under 1 hour at meter-scale resolution and near single-spore sensitivity and can be safely introduced into and recovered from the environment. This system solves the key challenges in object provenance: persistence in the environment, scalability, rapid and facile decoding, and biocontainment. Our system is compatible with SHERLOCK, a Cas13a RNA-guided nucleic acid detection assay, facilitating its implementation in a wide range of applications.


Author(s):  
Xi Mo ◽  
Xueliang Wang ◽  
Zhaoqin Zhu ◽  
Yuetian Yu ◽  
Dong Chang ◽  
...  

COVID-19 continues to circulate globally in 2021, while under the precise policy implementation of China’s public health system, the epidemic was quickly controlled, and society and the economy have recovered. During the pandemic response, nucleic acid detection of SARS-CoV-2 has played an indispensable role in the first line of defence. In the cases of emergency operations or patients presenting at fever clinics, nucleic acid detection is required to be performed and reported quickly. Therefore, nucleic acid point-of-care testing (POCT) technology for SARS-CoV-2 identification has emerged, and has been widely carried out at all levels of medical institutions. SARS-CoV-2 POCT has served as a complementary test to conventional polymerase chain reaction (PCR) batch tests, thus forming an experimental diagnosis platform that not only guarantees medical safety but also improves quality services. However, in view of the complexity of molecular diagnosis and the biosafety requirements involved, pathogen nucleic acid POCT is different from traditional blood-based physical and chemical index detection. No guidelines currently exist for POCT quality management, and there have been inconsistencies documented in practical operation. Therefore, Shanghai Society of Molecular Diagnostics, Shanghai Society of Laboratory Medicine, Clinical Microbiology Division of Shanghai Society of Microbiology and Shanghai Center for Clinical Laboratory have cooperated with experts in laboratory medicine to generate the present expert consensus. Based on the current spectrum of major infectious diseases in China, the whole-process operation management of pathogen POCT, including its application scenarios, biosafety management, personnel qualification, performance verification, quality control, and result reporting, are described here. This expert consensus will aid in promoting the rational application and robust development of this technology in public health defence and hospital infection management.


2021 ◽  
Vol 13 (22) ◽  
pp. 12807
Author(s):  
Md Fahim Tanvir Hossain ◽  
Samer Dessouky ◽  
Ayetullah B. Biten ◽  
Arturo Montoya ◽  
Daniel Fernandez

This study aims at designing and developing a new technique to harvest solar energy from asphalt pavements. The proposed energy harvester system consists of a pavement solar box with a transparent polycarbonate sample and a thin-film solar panel. This device mechanism can store energy in a battery charged over daytime and later convert it into electric power as per demand. A wide range of polycarbonate samples containing different thicknesses, elastic moduli, and light transmission properties were tested to select the most efficient materials for the energy harvester system. Transmittance Spectroscopy was conducted to determine the percent light transmission property of the polycarbonate samples at different wavelengths in the visible spectrum. Finite Element Analysis modeling of the pavement–tire load system was conducted to design the optimal energy harvester system under static load. It was followed by the collection of data on the generated power under different weather conditions. The energy harvesters were also subjected to vehicular loads in the field. The results suggest that the proposed pavement solar box can generate an average of 23.7 watts per square meter continuously over 6 h a day under sunny conditions for the weather circumstances encountered in South Texas while providing a slightly smaller power output in other weather circumstances. It is a promising self-powered and low-cost installation technique that can be implemented at pedestrian crossings and intersections to alert distracted drivers at the time of pedestrian crossing, which is likely to improve pedestrian safety.


2021 ◽  
Author(s):  
Zihan Li ◽  
Wenchang Zhao ◽  
Shixin Ma ◽  
Zexu Li ◽  
Yingjia Yao ◽  
...  

The CRISPR-based nucleic acid detection systems such as SHERLOCK, DETECTR and HOLMES have shown great potential for point-of-care testing of viral pathogens, especially in the context of COVID-19 pandemic. Here we optimize several key parameters of reaction chemistry and develop a Chemical Enhanced CRISPR Detection system for nucleic acid (termed CECRID). For the Cas12a/Cas13a-based signal detection phase, we determine buffer conditions and substrate range for optimal detection performance. By comparing several chemical additives, we find that addition of L-proline can secure or enhance Cas12a/Cas13a detection capability. For isothermal amplification phase with typical LAMP and RPA methods, inclusion of L-proline can also enhance specific target amplification as determined by CRISPR detection. Using SARS-CoV-2 pseudovirus, we demonstrate CECRID has enhanced detection sensitivity over chemical additive-null method with either fluorescence or lateral flow strip readout. Thus, CECRID provides an improved detection power and system robustness towards practical application of CRISPR-based diagnostics.


Author(s):  
Xinhui Xu ◽  
Tao Luo ◽  
Jinliang Gao ◽  
Na Lin ◽  
Weiwei Li ◽  
...  

AbstractNucleic acid detection techniques are always critical to diagnosis, especially in the background of the present COVID-19 pandemic. The simple and rapid detection techniques with high sensitivity and specificity are always urgently needed. However, the current nucleic acid detection techniques are still limited the traditional amplification and hybridization. To overcome the limitation, we here develop a CRISPR/Cas9-assisted DNA detection (CADD). In this detection, DNA sample is incubated with a pair of capture sgRNAs (sgRNAa and sgRNAb) specific to a target DNA, dCas9, a signal readout-related probe, and an oligo-coated solid support beads or microplate at room temperature for 15 min. During this incubation, the dCas9-sgRNA-DNA complex is formed and captured on solid support by the capture sequence of sgRNAa and the signal readout-related probe is captured by the capture sequence of sgRNAb. Finally the detection result is reported by a fluorescent or colorimetric signal readout. This detection was verified by detecting DNA of bacteria, cancer cell and virus. Especially, by designing a set of sgRNAs specific to 15 high-risk human papillomaviruses (HPVs), the HPV infection in 64 clinical cervical samples were successfully detected by the method. All detections can be finished in 30 minutes at room temperature. This detection holds promise for rapid on-the-spot detection or point-of-care testing (POCT).


PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0220091 ◽  
Author(s):  
Florian Katzmeier ◽  
Lukas Aufinger ◽  
Aurore Dupin ◽  
Jorge Quintero ◽  
Matthias Lenz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document