scholarly journals First-principles design of a single-atom–alloy propane dehydrogenation catalyst

Science ◽  
2021 ◽  
Vol 372 (6549) ◽  
pp. 1444-1447
Author(s):  
Ryan T. Hannagan ◽  
Georgios Giannakakis ◽  
Romain Réocreux ◽  
Julia Schumann ◽  
Jordan Finzel ◽  
...  

The complexity of heterogeneous catalysts means that a priori design of new catalytic materials is difficult, but the well-defined nature of single-atom–alloy catalysts has made it feasible to perform unambiguous theoretical modeling and precise surface science experiments. Herein we report the theory-led discovery of a rhodium-copper (RhCu) single-atom–alloy catalyst for propane dehydrogenation to propene. Although Rh is not generally considered for alkane dehydrogenation, first-principles calculations revealed that Rh atoms disperse in Cu and exhibit low carbon-hydrogen bond activation barriers. Surface science experiments confirmed these predictions, and together these results informed the design of a highly active, selective, and coke-resistant RhCu nanoparticle catalyst that enables low-temperature nonoxidative propane dehydrogenation.

Author(s):  
Konstantinos G. Papanikolaou ◽  
Michail Stamatakis

The development of platinum group metal-free (PGM-free) catalysts, which can efficiently reduce pollution-causing emissions, is an important task for overcoming major environmental challenges. In particular, nitrogen oxides (NOx) are major...


2021 ◽  
Author(s):  
Wei Liu ◽  
Yusen Yang ◽  
Haisong Feng ◽  
Yiming Niu ◽  
Lei Wang ◽  
...  

Abstract The design and exploitation of high-performance catalysts as well as understanding the structure-property correlation have gained considerable attention in selective hydrogenation reactions, but remain a huge challenge. Herein, we report a RuNi single atom alloy (SAA) in which Ru single atoms are anchored onto Ni nanoparticle surface via Ru–Ni coordination accompanied with electron transfer from sub-surface Ni to Ru. The optimal catalyst 0.4% RuNi SAA exhibits simultaneously improved activity (TOF value: 4293 h− 1) and chemoselectivity toward selective hydrogenation of 4-nitrostyrene to 4-aminostyrene (yield: >99%), which is, to the best of our knowledge, the highest level compared with reported heterogeneous catalysts. In situ experimental researches based on XAFS, FT-IR measurements and theoretical calculations reveal that the Ru–Ni interfacial sites as intrinsic active centers facilitate the preferential cleavage of N–O bond in nitro group with a decreased energy barrier by 0.35 eV. In addition, the Ru–Ni synergistic catalysis promotes the formation of intermediates (C8H7NO* and C8H7NOH*) and accelerates the rate-determining step (hydrogenation of C8H7NOH*), resulting in the extraordinary activity and chemoselectivity toward nitroarenes hydrogenation.


2019 ◽  
Vol 7 (41) ◽  
pp. 23868-23877 ◽  
Author(s):  
Hao Li ◽  
Wenrui Chai ◽  
Graeme Henkelman

Doping of a strong-binding single-atom element into inert close-packed substrates leads to highly active and selective initial dehydrogenation at the α-C–H site of adsorbed ethanol.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengyao Ouyang ◽  
Konstantinos G. Papanikolaou ◽  
Alexey Boubnov ◽  
Adam S. Hoffman ◽  
Georgios Giannakakis ◽  
...  

AbstractThe atomic scale structure of the active sites in heterogeneous catalysts is central to their reactivity and selectivity. Therefore, understanding active site stability and evolution under different reaction conditions is key to the design of efficient and robust catalysts. Herein we describe theoretical calculations which predict that carbon monoxide can be used to stabilize different active site geometries in bimetallic alloys and then demonstrate experimentally that the same PdAu bimetallic catalyst can be transitioned between a single-atom alloy and a Pd cluster phase. Each state of the catalyst exhibits distinct selectivity for the dehydrogenation of ethanol reaction with the single-atom alloy phase exhibiting high selectivity to acetaldehyde and hydrogen versus a range of products from Pd clusters. First-principles based Monte Carlo calculations explain the origin of this active site ensemble size tuning effect, and this work serves as a demonstration of what should be a general phenomenon that enables in situ control over catalyst selectivity.


2019 ◽  
Vol 10 (36) ◽  
pp. 8292-8298 ◽  
Author(s):  
Feilong Xing ◽  
Jaewan Jeon ◽  
Takashi Toyao ◽  
Ken-ichi Shimizu ◽  
Shinya Furukawa

Highly active and selective NO reduction was achieved at low temperatures using a minimum amount of noble metal Pd.


ACS Catalysis ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 8757-8765 ◽  
Author(s):  
Jilei Liu ◽  
Matthew B. Uhlman ◽  
Matthew M. Montemore ◽  
Antonios Trimpalis ◽  
Georgios Giannakakis ◽  
...  

2021 ◽  
Author(s):  
Yuki Nakaya ◽  
Eigo Hayashida ◽  
Hiroyuki Asakura ◽  
Ken-ichi Shimizu ◽  
Shinya Furukawa

Propane dehydrogenation (PDH) has been a promising propylene production process that can compensate for the increasing global demand for propylene. However, Pt-based catalysts with high stability at ≥600°C have barely been reported because the catalysts typically result in short catalyst life owing to side reactions and coke formation. Herein, we report a new class of heterogeneous catalysts using high-entropy intermetallics (HEIs). Pt–Pt ensembles, which cause side reactions, are entirely diluted by the component inert metals in PtGe-type HEI; thereby, unfavorable side reactions are drastically inhibited. The resultant HEI: (PtCoCu)(GeGeSn)/Ca–SiO2 exhibited an outstandingly high catalytic stability, even at 600°C (kd−1 = τ = 4146 h = 173 d), and almost no deactivation of the catalyst was observed two months for the first time.


Sign in / Sign up

Export Citation Format

Share Document