scholarly journals Persistent STAT5 activation reprograms the epigenetic landscape in CD4+ T cells to drive polyfunctionality and antitumor immunity

2020 ◽  
Vol 5 (52) ◽  
pp. eaba5962
Author(s):  
Zhi-Chun Ding ◽  
Huidong Shi ◽  
Nada S. Aboelella ◽  
Kateryna Fesenkova ◽  
Eun-Jeong Park ◽  
...  

The presence of polyfunctional CD4+ T cells is often associated with favorable antitumor immunity. We report here that persistent activation of signal transducer and activator of transcription 5 (STAT5) in tumor-specific CD4+ T cells drives the development of polyfunctional T cells. We showed that ectopic expression of a constitutively active form of murine STAT5A (CASTAT5) enabled tumor-specific CD4+ T cells to undergo robust expansion, infiltrate tumors vigorously, and elicit antitumor CD8+ T cell responses in a CD4+ T cell adoptive transfer model system. Integrated epigenomic and transcriptomic analysis revealed that CASTAT5 induced genome-wide chromatin remodeling in CD4+ T cells and established a distinct epigenetic and transcriptional landscape. Single-cell RNA sequencing analysis further identified a subset of CASTAT5-transduced CD4+ T cells with a molecular signature indicative of progenitor polyfunctional T cells. The therapeutic significance of CASTAT5 came from our finding that adoptive transfer of T cells engineered to coexpress CD19-targeting chimeric antigen receptor (CAR) and CASTAT5 gave rise to polyfunctional CD4+ CAR T cells in a mouse B cell lymphoma model. The optimal therapeutic outcome was obtained when both CD4+ and CD8+ CAR T cells were transduced with CASTAT5, indicating that CASTAT5 facilitates productive CD4 help to CD8+ T cells. Furthermore, we provide evidence that CASTAT5 is functional in primary human CD4+ T cells, underscoring its potential clinical relevance. Our results implicate STAT5 as a valid candidate for T cell engineering to generate polyfunctional, exhaustion-resistant, and tumor-tropic antitumor CD4+ T cells to potentiate adoptive T cell therapy for cancer.

2020 ◽  
Vol 14 (4) ◽  
pp. 312-323
Author(s):  
Romeo G. Mihăilă

Background: Patients with refractory or relapsed diffuse large B-cell lymphoma have a poor prognosis with the current standard of care. Objective: Chimeric Antigen Receptor T-cells (CAR T-cells) are functionally reprogrammed lymphocytes, which are able to recognize and kill tumor cells. The aim of this study is to make progress in this area. Method: A mini-review was achieved using the articles published in Web of Science and PubMed in the last year and the new patents were made in this field. Results: The responses to CAR T-cell products axicabtagene ciloleucel and tisagenlecleucel are promising; the objective response rate can reach up to 83%, and the complete response rate ranges between 40 and 58%. About half of the patients may have serious side effects, such as cytokine release syndrome and neurotoxicity. Current and future developments include the improvement of CAR T-cell expansion and polyfunctionality, the combined use of CAR T-cells with a fusion protein between interferon and an anti-CD20 monoclonal antibody, with checkpoint inhibitors or small molecule sensitizers that have apoptotic-regulatory effects. Furthermore, the use of IL-12-expressing CAR T-cells, an improved technology for the production of CAR T-cells based on targeted nucleases, the widespread use of allogeneic CAR T-cells or universal CAR T-cells obtained from genetically engineered healthy donor T-cells are future developments actively considered. Conclusion: CAR T-cell therapy significantly improved the outcome of patients with relapsed or refractory diffuse large B-cell lymphoma. The advances in CAR T-cells production technology will improve the results and enable the expansion of this new immunotherapy.


2020 ◽  
Vol 4 (13) ◽  
pp. 3024-3033 ◽  
Author(s):  
Kitsada Wudhikarn ◽  
Martina Pennisi ◽  
Marta Garcia-Recio ◽  
Jessica R. Flynn ◽  
Aishat Afuye ◽  
...  

Abstract Cytokine release syndrome (CRS) immune effector cell–associated neurotoxicity syndrome are the most notable toxicities of CD19 chimeric antigen receptor (CAR) T-cell therapy. In addition, CAR T-cell–mediated toxicities can involve any organ system, with varied impacts on outcomes, depending on patient factors and involved organs. We performed detailed analysis of organ-specific toxicities and their association with outcomes in 60 patients with diffuse large B-cell lymphoma (DLBCL) treated with CD19 CAR T cells by assessing all toxicities in organ-based groups during the first year posttreatment. We observed 539 grade ≥2 and 289 grade ≥3 toxicities. Common grade ≥3 toxicities included hematological, metabolic, infectious, and neurological complications, with corresponding 1-year cumulative incidence of 57.7%, 54.8%, 35.4%, and 18.3%, respectively. Patients with impaired performance status had a higher risk of grade ≥3 metabolic complications, whereas elevated lactate dehydrogenase was associated with higher risks of grade ≥3 neurological and pulmonary toxicities. CRS was associated with higher incidence of grade ≥3 metabolic, pulmonary, and neurologic complications. The 1-year nonrelapse mortality and overall survival were 1.7% and 69%, respectively. Only grade ≥3 pulmonary toxicities were associated with an increased mortality risk. In summary, toxicity burdens after CD19 CAR T-cell therapy were high and varied by organ systems. Most toxicities were manageable and were rarely associated with mortality. Our study emphasizes the importance of toxicity assessment, which could serve as a benchmark for further research to reduce symptom burdens and improve tolerability in patients treated with CAR T cells.


Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 125 ◽  
Author(s):  
Aleksei Titov ◽  
Aygul Valiullina ◽  
Ekaterina Zmievskaya ◽  
Ekaterina Zaikova ◽  
Alexey Petukhov ◽  
...  

Chimeric antigen receptor (CAR) immunotherapy is one of the most promising modern approaches for the treatment of cancer. To date only two CAR T-cell products, Kymriah® and Yescarta®, have been approved by the Food and Drug Administration (FDA) for the treatment of lymphoblastic leukemia and B-cell lymphoma. Administration of CAR T-cells to control solid tumors has long been envisaged as one of the most difficult therapeutic tasks. The first two clinical trials conducted in sarcoma and neuroblastoma patients showed clinical benefits of CAR T-cells, yet multiple obstacles still hold us back from having accessible and efficient therapy. Why did such an effective treatment for relapsed and refractory hematological malignancies demonstrate only relatively modest efficiency in the context of solid tumors? Is it due to the lucky selection of the “magic” CD19 antigen, which might be one of a kind? Or do lymphomas lack the immunosuppressive features of solid tumors? Here we review the existing knowledge in the field of CAR T-cell therapy and address the heterogeneity of solid tumors and their diverse strategies of immunoevasion. We also provide an insight into prospective developments of CAR T-cell technologies against solid tumors.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1851-1851 ◽  
Author(s):  
Diogo Gomes da Silva ◽  
Malini Mukherjee ◽  
Madhuwanti Srinivasan ◽  
Olga Dakhova ◽  
Hao Liu ◽  
...  

Abstract Although adoptive transfer of T cells with second-generation CD19-specific CARs containing CD28 or 4-1BB costimulatory endodomains shows remarkable clinical efficacy against B cell malignancies, the optimal choice of costimulatory domains in these and other CARs remains controversial. Depending on the precise CAR structure and specificity, individual endodomains may be associated with deleterious ligand-independent tonic signaling in the transduced T cell. Long et al. (Nat Med 2015) established the CD28 co-stimulatory endodomain can have a toxic tonic signaling effect, but it is unclear if tonic 4-1BB signaling may have deleterious consequences as well, and if such effects can be reversed. We therefore modeled tonic CAR signaling in T cells by transducing them with gammaretroviral vectors expressing 2nd-generation CD19.CAR constructs containing either the CD28 or 4-1BB costimulatory endodomain (in addition to the CD3-ζ chain endodomain). Compared to CAR-T cells with the CD28 endodomain alone, those with 4-1BB alone expanded 70% more slowly following transduction. Impaired expansion of 4-1BB CD19.CAR-T cells was coupled with a 4-fold increase in apoptosis and a gradual downregulation of CAR expression, and was a consequence of 4-1BB-associated tonic TRAF2-dependent signaling, leading to activation of NF-κB, upregulation of Fas and augmented Fas-dependent activation-induced T cell death (AICD). Moreover, expression of 4-1BB CAR from a gammaretroviral vector increased tonic signaling through a self-amplifying/positive feedback effect on the retroviral LTR promoter. Because of the toxicity of 4-1BB in our gammaretroviral CAR.CD19 construct (manifest by delayed expansion and increased apoptosis) we could not directly compare the in vivo fate of T cells expressing CAR.CD19 4-1BB with that of co-administered CAR.CD19 CD28 T cells in patients with lymphoma. We found, however, that the adverse effects of tonic 4-1BB costimulation could be overcome in a 3rd-generation CAR.CD19 vector, containing both CD28 and 4-1BB costimulatory molecules in tandem. We thus compared the fate of a 3rd-generation vector containing both CD28 and 4-1BB costimulatory domains with that of a 2nd-generation vector containing CD28 alone. Six patients with refractory/relapsed diffuse large B-cell lymphoma received 2 cell populations, one expressing 2nd and one expressing 3rd generation vectors. To determine whether CD28 alone was optimal (which would suggest 4-1BB is antagonistic) or whether 4-1BB had an additive or synergistic effect contributing to superior persistence and expansion of the CD28-41BB combination, patients were simultaneously infused with 1-20×106 of both 2nd and 3rd generation CAR+ T cells/m2 48-72 hours after lymphodepletion with cyclophosphamide (500 mg/m2/d) and fludarabine (30 mg/m2/d) × 3. Persistence of infused T cells was assessed in blood by CD19.CAR qPCR assays specific for each CAR. Molecular signals peaked approximately 2 weeks post infusion, remaining detectable for up to 6 months. The 3rd-generation CAR-T cells had a mean 23-fold (range 1.1 to 109-fold) higher expansion than 2nd-generation CAR-T cells and correspondingly longer persistence. Two patients had grade 2 cytokine release syndrome, with elevation of proinflammatory cytokines, including IL-6, at the time of peak expansion of T cells. Of the 5 patients evaluable for response, 2 entered complete remission (the longest ongoing for 9 months), 1 has had continued complete remission after autologous stem cell transplantation, 1 had a partial response, and 1 progressed. In conclusion, our data indicate that infusion of T cells carrying a CD19.CAR containing CD28 and 4-1BB endodomains is safe and can have efficacy at every dose level tested. Additionally, in a side-by-side comparison, the 3rdgeneration vector produced greater in vivo expansion and persistence than an otherwise identical CAR-T cell population with CD28 alone. Disclosures Rooney: Cell Medica: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Viracyte: Equity Ownership. Heslop:Celgene: Patents & Royalties, Research Funding; Chimerix: Other: Endpoint adjudication committee; Viracyte: Equity Ownership; Cell Medica: Patents & Royalties: Licensing agreement EBV-specific T cells.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2800-2800
Author(s):  
Michael Olson ◽  
Tim Luetkens ◽  
Fiorella Iglesias ◽  
Sabarinath Radhakrishnan ◽  
Jennie Y. Law ◽  
...  

Abstract B cell lymphoma is the most common hematologic malignancy in the United States. Although treatment options have greatly improved in the past several decades, outcomes for patients with relapsed B cell lymphoma remain poor. Chimeric antigen receptor (CAR) T cells have recently entered the clinic with promise to address the gap in effective therapies for patients relapsed B cell lymphoma. However, antigen loss and poor CAR T cell persistence has been shown to drive resistance to the widely approved CD19-targeted CAR in some patients, demonstrating the need for additional therapies. Here, we demonstrate CD229-targeted CAR T cell therapy as a promising option for the treatment of relapsed B cell lymphoma, addressing an important group of patients with typically poor outcomes. CD229 is an immune-modulating receptor expressed on the surface of B cells that we recently found to be highly expressed in the plasma cell neoplasm multiple myeloma (Radhakrishnan et al. 2020). We utilized semi-quantitative PCR and flow cytometry to assess whether CD229 is also expressed on malignant B cells earlier in development as found in B cell lymphoma. Expression analysis revealed the presence of CD229 in a panel of 11 B cell lymphoma cell lines and 45 primary B cell lymphoma samples comprising several subsets of disease including aggressive B cell lymphomas such as diffuse large B cell lymphoma (DLBCL), mantle cell lymphoma (MCL) and Burkitt lymphoma as well as indolent subtypes of B cell lymphoma including chronic lymphoblastic leukemia (CLL) and follicular lymphoma. Of note, CD229 was found to be overexpressed on primary B cell lymphoma cells when compared to autologous normal B cells. Given the high levels of CD229 expression throughout all B cell lymphoma subtypes analyzed, we generated CD229 CAR T cells in order to determine whether CAR T cell therapy is an effective way to target CD229 expressing B cell lymphoma cells. CD229 CAR T cells exhibited robust cytotoxicity when cocultured with B cell lymphoma cell lines and primary samples characterized by significant production of TH1 cytokines IL-2, TNF and IFNγ and rapid loss of B cell lymphoma cell viability when compared to control CAR T cells lacking an antigen binding scFv domain (∆scFv CAR T cells). In vivo analysis revealed effective tumor control in NSG mice carrying B cell lymphoma cell lines JeKo-1 (MCL) and DB (DLBCL) when treated with CD229 CAR T cells versus ∆scFv CAR T cells. Finally, we sought to determine the efficacy of CD229 CAR T cells in the context of CD19 CAR T cell therapy relapse. Here, a 71-year-old patient with CLL had an initial response when treated with CD19 CAR T cells but quickly relapsed only 2 months after treatment. Malignant cells from the CLL patient retained CD229 expression as identified by flow cytometry and an ex vivo coculture with CD229 CAR T cells revealed robust killing of CLL cells by CD229 CAR T cells. Transfer of antigen from target cell to CAR T cell by trogocytosis was recently suggested to drive relapse following CAR T cell therapy by decreasing antigen on tumor cells and promoting CAR T cell fratricide (Hamieh et al. 2019). We cocultured CD19 and CD229 CAR T cells with primary CLL cells and assessed CD19 and CD229 expression as well as CAR T cell viability by flow cytometry. In contrast with CD19 CAR T cells, CD229 CARs did not strip their target antigen from the surface of CLL cells. The transfer of CD19 from CLL cells to CD19 CAR T cells resulted in poor CAR T cell viability while CD229 CAR T cell viability remained high following coculture. In summary, we demonstrate that CD229 is a promising therapeutic target in B cell lymphoma due to its high levels of expression throughout many subtypes of disease. CD229 CAR T cells effectively kill B cell lymphoma cells in vitro and control growth of aggressive B cell lymphomas in vivo. Finally, CD229 CAR T cells are effective against primary CLL cells from patients that have relapsed from CD19 CAR T cell therapy and do no exhibit antigen loss by trogocytosis. Taken together, these data suggest that CD229 CAR T cell therapy may be a promising option to address the poor outcomes for patients with relapsed B cell lymphoma. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 5 (19) ◽  
pp. 3789-3793
Author(s):  
Susanne Jung ◽  
Jochen Greiner ◽  
Stephanie von Harsdorf ◽  
Pavle Popovic ◽  
Roland Moll ◽  
...  

Abstract Treatment with CD19-directed (CAR) T cells has evolved as a standard of care for multiply relapsed or refractory large B-cell lymphoma (r/r LBCL). A common side effect of this treatment is the immune effector cell–associated neurotoxicity syndrome (ICANS). Severe ICANS can occur in up to 30% to 40% of patients treated with axicabtagene-ciloleucel (axi-cel), usually within the first 4 weeks after administration of the dose and usually responding well to steroids. We describe a case of progressive central neurotoxicity occurring 9 months after axi-cel infusion in a patient with r/r LBCL who had undergone a prior allogeneic hematopoietic cell transplant. Despite extensive systemic and intrathecal immunosuppression, neurological deterioration was inexorable and eventually fatal within 5 months. High CAR T-cell DNA copy numbers and elevated levels of interleukin-1 (IL-1) and IL-6 were found in the cerebral spinal fluid as clinical symptoms emerged, and CAR T-cell brain infiltration was observed on autopsy, suggesting that CAR T cells played a major pathogenetic role. This case of unexpected, devastating, late neurotoxicity warrants intensified investigation of neurological off-target effects of CD19-directed CAR T cells and highlights the need for continuous monitoring for late toxicities in this vulnerable patient population.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ulrich Blache ◽  
Ronald Weiss ◽  
Andreas Boldt ◽  
Michael Kapinsky ◽  
André-René Blaudszun ◽  
...  

Adoptive immunotherapy using chimeric antigen receptor (CAR)-T cells has achieved successful remissions in refractory B-cell leukemia and B-cell lymphomas. In order to estimate both success and severe side effects of CAR-T cell therapies, longitudinal monitoring of the patient’s immune system including CAR-T cells is desirable to accompany clinical staging. To conduct research on the fate and immunological impact of infused CAR-T cells, we established standardized 13-colour/15-parameter flow cytometry assays that are suitable to characterize immune cell subpopulations in the peripheral blood during CAR-T cell treatment. The respective staining technology is based on pre-formulated dry antibody panels in a uniform format. Additionally, further antibodies of choice can be added to address specific clinical or research questions. We designed panels for the anti-CD19 CAR-T therapy and, as a proof of concept, we assessed a healthy individual and three B-cell lymphoma patients treated with anti-CD19 CAR-T cells. We analyzed the presence of anti-CD19 CAR-T cells as well as residual CD19+ B cells, the activation status of the T-cell compartment, the expression of co-stimulatory signaling molecules and cytotoxic agents such as perforin and granzyme B. In summary, this work introduces standardized and modular flow cytometry assays for CAR-T cell clinical research, which could also be adapted in the future as quality controls during the CAR-T cell manufacturing process.


Author(s):  
Jonathan P Mochel ◽  
Stephen C Ekker ◽  
Chad M Johannes ◽  
Albert E Jergens ◽  
Karin Allenspach ◽  
...  

The advent of the genome editing era brings forth the promise of adoptive cell transfer using engineered chimeric antigen receptor (CAR) T-cells for targeted cancer therapy. CAR T-cell immunotherapy is probably one of the most encouraging developments for the treatment of hematological malignancies. In 2017, two CAR T-cell therapies were approved by the U. S Food and Drug Administration; one for the treatment of pediatric Acute Lymphoblastic Leukemia (ALL), the other for adult patients with advanced lymphomas. However, despite significant progress in the area, CAR T-cell therapy is still in its early days and faces significant challenges, including the complexity and costs associated with the technology. B-cell lymphoma is the most common hematopoietic cancer in dogs, with an incidence approaching 0.1% and a total of 20-100 cases per 100,000 individuals. It is a widely accepted naturally occurring model for human non-Hodgkin’s lymphoma. Current treatment is with combination chemotherapy protocols, which prolong life for less than a year in canines and are associated with severe dose-limiting side effects, such as gastrointestinal and bone marrow toxicity. To date, one canine study generated CAR T-cells by transfection of mRNA for CAR domain expression. While this was shown to provide a transient anti-tumor activity, results were modest, indicating that stable, genomic integration of CAR modules is required in order to achieve lasting therapeutic benefit. This Commentary summarizes the current state of knowledge on CAR T-cell immunotherapy in human medicine and its potential applications in animal health, while discussing the potential of the canine model as a translational system for immuno-oncology research.


2021 ◽  
Vol 11 ◽  
Author(s):  
Limin Xing ◽  
Yihao Wang ◽  
Hui Liu ◽  
Shan Gao ◽  
Qing Shao ◽  
...  

Chimeric antigen receptor T (CAR-T) cells show good efficacy in the treatment of relapsed and refractory B-cell tumors, such as acute B-cell leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). The main toxicities of CAR-T include cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, cytopenia, and severe infection. It is still very difficult for CAR-T to kill tumor cells to the maximum extent and avoid damaging normal organs. Here, we report a case of DLBCL with persistent grade 4 thrombocytopenia and severe platelet transfusion dependence treated with CD19 CAR-T cells. We used sirolimus to inhibit the sustained activation of CAR-T cells and restore normal bone marrow hematopoiesis and peripheral blood cells. Moreover, sirolimus treatment did not affect the short-term efficacy of CAR-T cells, and DLBCL was in complete remission at the end of follow-up. In conclusion, sirolimus can represent a new strategy for the management of CAR-T cell therapy-related toxicity, including but not limited to hematotoxicity. However, further controlled clinical studies are required to confirm these findings.


Author(s):  
Alexander Ring ◽  
Antonia Maria Müller

ABSTRACT Introduction: Diffuse large B-cell lymphoma (DLBCL) is the most common neoplasm of the lymphatic system. Treatment and clinical management are difficult in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR) T cells are genetically engineered using autologous patient lymphocytes and have shown very promising results in the treatment of relapsed and refractory cases of DLBCL. Methods: A 64-year-old male patient with refractory DLBCL and central nervous system (CNS) involvement after 9 lines of therapy was treated with CD19-specific CAR T cell therapy at the Department of medical oncology and hematology at the University Hospital of Zurich and followed-up for 10 weeks. Results: Autologous lymphocytes were successfully harvested and transfected/expanded for CAR T cell production. Conditioning chemotherapy and CAR T infusion was well tolerated. Post-infusion side effects were mild (cytokine release syndrome [CRS] grade 1−2), with limited signs of neurotoxicity. Ten weeks after CAR T cell therapy, an excellent response could be documented via PET-CT. The CNS lesion disappeared as assessed via cranial MRI. Conclusion: CD19-targeted CAR T cell therapy is a revolutionary treatment option for heavily pre-treated R/R DLBCL even in the setting of CNS involvement.


Sign in / Sign up

Export Citation Format

Share Document