scholarly journals Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics

2021 ◽  
Vol 6 (56) ◽  
pp. eabe6291 ◽  
Author(s):  
Hamish W. King ◽  
Nara Orban ◽  
John C. Riches ◽  
Andrew J. Clear ◽  
Gary Warnes ◽  
...  

Protective humoral memory forms in secondary lymphoid organs where B cells undergo affinity maturation and differentiation into memory or plasma cells. Here, we provide a comprehensive roadmap of human B cell maturation with single-cell transcriptomics matched with bulk and single-cell antibody repertoires to define gene expression, antibody repertoires, and clonal sharing of B cell states at single-cell resolution, including memory B cell heterogeneity that reflects diverse functional and signaling states. We reconstruct gene expression dynamics during B cell activation to reveal a pre–germinal center state primed to undergo class switch recombination and dissect how antibody class–dependent gene expression in germinal center and memory B cells is linked with a distinct transcriptional wiring with potential to influence their fate and function. Our analyses reveal the dynamic cellular states that shape human B cell–mediated immunity and highlight how antibody isotype may play a role during their antibody-based selection.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 279-279
Author(s):  
Karen L. Bunting ◽  
David Soong ◽  
Yanwen Jiang ◽  
Brandon L. Swed ◽  
Katerina Hatzi ◽  
...  

Abstract Abstract 279 B cell affinity maturation is fundamental to the development of humoral immunity. To create a diverse antibody repertoire, B cells activated in the germinal centre (GC) must undergo a profound change in phenotype. This unique phenotypic change, which features simultaneous proliferation and somatic hypermutation and which can predispose to the development of lymphoma, requires radically altered gene expression programming in GC B cells. However, the way that this gene expression program is coordinated is unknown. Emerging evidence suggests that the higher-order organization of chromatin plays a role in the co-regulation of genes. We hypothesised that the three-dimensional organization of genes and chromosomes in the nucleus of B cells plays a key role in the epigenetic and transcriptional reprogramming that underlies acquisition of the GC B cell phenotype during B cell maturation. Using genome-wide mapping of chromatin interactions (Hi-C), combined with genome-wide profiles of gene expression (RNA-seq), histone modifications and transcription factor binding (ChIP-seq) in human naïve B (NB) and GC B cells, we have discovered that the three-dimensional structure of the genome undergoes widespread reorganization during B cell maturation to coordinate the GC transcriptional programme. Conformational maps of chromosome folding in these cells reveal a novel and profound loss of inter-arm interactions, reflecting lower chromosome compaction in GC B cells. Remarkably, we observed extensive differential partitioning of genes into NB- and GC B cell-specific compartments, and demonstrate for the first time that coordinated changes in histone modifications (H3K4Me2: P=3×10−35; H3K27Ac: P=3×10−33; Fisher's exact test) and transcription (P=1×10−9) required for cell type specification is mediated by the de novo formation of precisely delimited chromosome neighbourhoods. Most strikingly, we find that remodelling of the GC B cell genome involves the specific structural unlocking of genes that drive the GC transcriptional programme, such as AICDA, MTA3, and BCL6. Coordinate activation of these genes is mediated by the expansion of gene interaction neighbourhoods, increased promoter interactivity (P=3×10−35), engagement of long-range enhancer-promoter interactions (>2-fold increase), and the formation of gene body loops (P=3.18×10−15). Intriguingly, the master regulator of GC B cell differentiation, BCL6, shows a high propensity for all of these different types of interactions, suggesting that regulation of this gene in the context of chromatin is highly complex. Integration with genome-wide binding data for the structural organizing proteins, CTCF and cohesin, as well as the cell-specific factor, PU.1, supports a specific role for these proteins in the repositioning of activated promoters and enhancer regions during B cell maturation. This study shows for the first time that the architecture of the genome is critical for specification of cellular phenotype, and that epigenetic and transcriptional reprogramming in GC B cells is functionally linked to the structural reorganization of genes in the nucleus. Importantly, the higher-order organization of chromatin could represent a novel mechanism by which GC B cell gene expression is dysregulated in lymphoma. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liang Cheng ◽  
Guangming Li ◽  
Caroline Marnata Pellegry ◽  
Fumihiko Yasui ◽  
Feng Li ◽  
...  

Mice reconstituted with a human immune system (humanized mice) provide a robust model to study human immunology, vaccinology, and human infectious diseases. However, the development and function of B cells in humanized mice is impaired. B cells from humanized mice are immature and are impaired in IgM to IgG isotype switch in response to infection or vaccination. In the present study we report that Toll-like receptor 9 (TLR9) agonist CpG-B combined with CD40-targeting vaccination triggered human B cell immunoglobin class-switch from IgM+ to IgG+ B cells in humanized mice. Human B cells from mice vaccinated with CpG-B as adjuvant were more mature in phenotype and produced significant levels of both total IgG and antigen-specific IgG. We found that CpG-B treatment activated human pDCs (plasmacytoid dendritic cells) in vivo to induce interferon-alpha (IFN-α)expression in humanized mice. Pre-depletion of human pDC in vivo abrogated the adjuvant effect of CpG-B. Our results indicate that TLR9 and CD40-targeting vaccination triggers human B cell maturation and immunoglobulin class-switch in a pDC-dependent manner in humanized mice. The findings also shed light on induction of human IgG antibodies in humanized mouse models.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 670-670
Author(s):  
Gabriel Brisou ◽  
Manon Zala ◽  
Laurine Gil ◽  
Giulia Pagano ◽  
Agnès Bru ◽  
...  

Abstract Follicular lymphoma (FL) is a prototypical example of germinal center (GC) derived B-cell lymphoma. Using a mouse model recapitulating the sporadic occurrence of the FL hallmark BCL2/IGH translocation in healthy individuals, our previous work demonstrated that FL genesis is a dynamic process that requires multiple re-entries of BCL2+ memory B-cells into the GC to ultimately accumulate in lymphoid organs. In line with this, using single-cell gene expression analysis of human FL vs normal GC B-cells, we recently discovered that FL cells are not 'frozen' at a particular GC maturation stage but instead exhibit a major desynchronization of the GC-specific expression program (Milpied et al. Nat Immunol in press). Since KMT2D loss-of-function mutations and BCL2 translocations are the 2 main alterations in FL, we hypothesized these 2 genetic events might explain the GC program desynchronization we observe in humans. To explore the in vivo consequences of Kmt2d inactivation with Bcl2 overexpression in regulating GC/memory dynamics, we transduced bone marrow progenitors carrying B-cell-specific conditional Cd19-Cre Kmt2dflox/flox alleles with a retrovirus encoding human BCL2 or reporter alone, followed by iv transplantation into lethally irradiated WT recipients. Only double-mutant Kmt2d-/-Bcl2+ mice manifested with GC-derived lymphomas in chronically challenged animals, recapitulating histological and phenotypic features associated with human FL progression from early preneoplastic lesions to overt FL-like tumors. We used integrative single-cell analysis of surface phenotype (10-color panel), gene expression (88-gene panel by microfluidic RT-qPCR) and IGH clonality to deconvolute cellular heterogeneity of flow-sorted GC and memory B-cells after acute (day 10) or chronic T-cell dependent immunization in double-mutant vs. single Bcl2+, Kmt2d-/- or WT mice, retaining >4000 cells for downstream analysis. Populations of WT GC B-cells were molecularly heterogeneous and spanned a cyclic continuum of transitional B-cell states polarized between the light and dark zone where synchronized expression of gene modules characterized mouse GC functional identity. In acute responses, single and double-mutant mice formed GC similar to control chimera mice, and single GC B-cells from all genotypes clustered together with WT GCs, suggesting unperturbed GC transcriptional dynamics upon first antigen encounter. However, preneoplastic/tumoral Kmt2d-/-Bcl2+ mice after chronic challenge showed massive GC hyperplasia and single B-cells expressed a distinct transcriptional signature that clustered separately from WT GC or memory cells. Specifically, murine lymphoma B-cells sorted with a GC-like phenotype accumulated in transitional cell states where the synchrony of most GC-specific co-expression patterns was progressively lost whereas expression of cytokines (Lta) or surface markers linked to GC to memory transition (Gpr183, Cxcr3) became markedly expressed, indicating that Kmt2d-deficient lymphomas were not blocked at a particular GC stage. Given the importance of T-cell help for the fate 'decisions' of GC-to-memory B-cells, we further explored whether tumor cell-intrinsic factors may affect immune cell phenotypes thereby supporting the GC gene expression desynchronization. Using flow cytometry, we found that Kmt2d inactivation instructed a progressive remodeling of the tumor microenvironment with an increased recruitment of CD4+ T-follicular helper (TFH) (n=21, p<0.01). Using droplet-based single-cell RNA-seq to profile total spleens from 2 WT mice and 2 lymphomas (>9000 cells), we revealed a TFH cluster with an activation signature distinct from normal TFH and a concomitant expansion of exhausted CD8+ T-cells strongly co-expressing inhibitory receptors (Lag3, Tim3, Pdcd1), thereby indicating that Kmt2d inactivation in B-cells may favor lymphoma formation by shaping the FL tumor supportive niche and contributing to immune evasion. In summary, our integrative single-cell analyses in murine lymphomas revealed that Kmt2d mutations in FL not only instruct B-cell intrinsic effects involving the desynchronization of the normal GC expression program, but also trigger a concomitant re-education of a tumor-supportive immune microenvironment, establishing for the first time a key link between the most frequent epigenetic alteration and the FL microenvironment. Disclosures Salles: F. Hoffmann-La Roche Ltd: Consultancy, Honoraria, Research Funding; Celgene: Honoraria, Other: Advisory Board, Research Funding; Janssen: Honoraria, Other: Advisory Board; Novartis: Consultancy, Honoraria; Takeda: Honoraria; Servier: Honoraria, Other: Advisory Board; Epizyme: Honoraria; Merck: Honoraria; BMS: Honoraria, Other: Advisory Board; Morphosys: Honoraria; Acerta: Honoraria; Amgen: Honoraria; Gilead: Honoraria, Other: Advisory Board; Pfizer: Honoraria; Servier: Honoraria; Abbvie: Honoraria.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1179-1179
Author(s):  
Zhongfa Yang ◽  
Yu Zhu ◽  
Rachel Gerstein ◽  
Alan G. Rosmarin

Abstract B lymphocytes develop in the bone marrow and later encounter antigen in lymph nodes, where they complete their development as plasma cells or B memory cells. Several key transcription factors have been identified that are required for B cell development, including Pax5, BCL6, C-MYC, and others. GABP is a tetrameric ets transcription factor that includes the DNA-binding GABP alpha protein, and the unrelated protein, GABP beta, which contains multimerization and transcriptional activation domains. GABP plays key roles in cell cycle control and mitochondrial biogenesis. It is also required for lineage specific gene expression, and it was previously shown to control gene expression of the IL-7 receptor and Pax5, both of which are required for lymphocyte development. Disruption of mouse Gabpα caused cell cycle arrest in hematopoietic stem cells (HSC), profound loss of progenitor cells, and aberrant myeloid differentiation. We created a conditional knockout model of Gabpα in B lymphocytes by breeding mice with lox-P flanked Gabpa to mice that bear Cre recombinase knocked into the B-cell specific CD19 locus; the mice also carry the Rosa 26 lox-STOP-lox YFP transgene, which permits identification and isolation of individual Gabpα null cells, based on expression of YFP. Loss of Gabpα was highly lineage specific for B lymphocytes. Gabpa null mice were healthy and vigorous through young adulthood, but some developed rectal prolapse by nine months of age, and necropsy demonstrated thinning of the intestinal wall and loss of Peyer's Patches and other lymphoid tissue. We immunologically characterized mice between 6 and 8 weeks of age, in order to minimize secondary effects of the inflammatory process associated with rectal prolapse. There was no deletion of Gabpα in T lymphocytes, and no discernable effect on T-cell subpopulations. We observed a significant reduction in Gabpα null (YFP+) B cells, in comparison with the Gabpα replete (YFP-) B cells in bone marrow and spleen. Gabpα null cells contributed to the pro-B cell population, but there was a progressively reduced contribution of Gabpα null cells to later stages of B cell maturation. We detected no Gabpα null cells among mature naive IgD+/IgM+ B cells, indicating a profound block in B cell maturation in cells that lack Gabpα. Importantly, no YFP+ CD138+ cells were detected, indicating that Gabpα null cells could not contribute to plasma cell development. We conclude that Gabp is required for full B cell maturation and plasma cell development in mice, and that its deletion is associated with loss of Peyer's Patches and rectal prolapse. GABP was previously shown to regulate expression of IL-7R and Pax5, which are expressed in lymphoid progenitor cells long before activation of CD19 expression. Thus, failure of B cell development and plasma cell formation in this CD19-Cre Gabpα null model is independent of the effect of GABP on those other B cell factors, and indicates a new, critical role for GABP in later stages of B cell and plasma cell development. Although rectal prolapse has been observed in mice with T cell defects, this represents the first demonstration that B cell defects cause such a phenotype. Disclosures Gerstein: Vertex Pharmaceuticals: Other: employer of spouse.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lucía del Pino-Molina ◽  
Eduardo López-Granados ◽  
Quentin Lecrevisse ◽  
Juan Torres Canizales ◽  
Martín Pérez-Andrés ◽  
...  

IntroductionCommon Variable Immunodeficiency (CVID) is characterized by defective antibody production and hypogammaglobulinemia. Flow cytometry immunophenotyping of blood lymphocytes has become of great relevance for the diagnosis and classification of CVID, due to an impaired differentiation of mature post-germinal-center (GC) class-switched memory B-cells (MBC) and severely decreased plasmablast/plasma cell (Pb) counts. Here, we investigated in detail the pre-GC B-cell maturation compartment in blood of CVID patients.MethodsIn this collaborative multicentric study the EuroFlow PID 8-color Pre-GC B-cell tube, standardized sample preparation procedures (SOPs) and innovative data analysis tools, were used to characterize the maturation profile of pre-GC B-cells in 100 CVID patients, vs 62 age-matched healthy donors (HD).ResultsThe Pre-GC B-cell tube allowed identification within pre-GC B-cells of three subsets of maturation associated immature B-cells and three subpopulations of mature naïve B-lymphocytes. CVID patients showed overall reduced median absolute counts (vs HD) of the two more advanced stages of maturation of both CD5+ CD38+/++ CD21het CD24++ (2.7 vs 5.6 cells/µl, p=0.0004) and CD5+ CD38het CD21+ CD24+ (6.5 vs 17 cells/µl, p&lt;0.0001) immature B cells (below normal HD levels in 22% and 37% of CVID patients). This was associated with an expansion of CD21-CD24- (6.1 vs 0.74 cells/µl, p&lt;0.0001) and CD21-CD24++ (1.8 vs 0.4 cells/µl, p&lt;0.0001) naïve B-cell counts above normal values in 73% and 94% cases, respectively. Additionally, reduced IgMD+ (21 vs 32 cells/µl, p=0.03) and IgMD- (4 vs 35 cells/µl, p&lt;0.0001) MBC counts were found to be below normal values in 25% and 77% of CVID patients, respectively, always together with severely reduced/undetectable circulating blood pb. Comparison of the maturation pathway profile of pre-GC B cells in blood of CVID patients vs HD using EuroFlow software tools showed systematically altered patterns in CVID. These consisted of: i) a normally-appearing maturation pathway with altered levels of expression of &gt;1 (CD38, CD5, CD19, CD21, CD24, and/or smIgM) phenotypic marker (57/88 patients; 65%) for a total of 3 distinct CVID patient profiles (group 1: 42/88 patients, 48%; group 2: 8/88, 9%; and group 3: 7/88, 8%) and ii) CVID patients with a clearly altered pre-GC B cell maturation pathway in blood (group 4: 31/88 cases, 35%).ConclusionOur results show that maturation of pre-GC B-cells in blood of CVID is systematically altered with up to four distinctly altered maturation profiles. Further studies, are necessary to better understand the impact of such alterations on the post-GC defects and the clinical heterogeneity of CVID.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4346-4346
Author(s):  
Marta Kulis ◽  
Simon Heath ◽  
Giancarlo Castellano ◽  
Renée Beekman ◽  
Angelika Merkel ◽  
...  

Abstract Introduction: Modulation of the DNA methylation landscape during cell differentiation is a well-established phenomenon. The B-cell lineage represents a paradigmatic cellular model to study the dynamic epigenome during cell development and specification because major B-cell maturation stages are well defined and display differential phenotypic and gene expression features. Furthermore, different B-cell subpopulations show different proliferation abilities, microenvironmental influences and life spans, providing a window of opportunity to study the epigenome in the context of multiple processes. Methods: We performed whole-genome bisulfite sequencing (WGBS), high-density methylation microarrays and gene expression profiling of ten purified human B-cell subpopulations spanning the entire differentiation program, ranging from uncommitted progenitors to terminally-differentiated plasma cells. Results: The results of both WGBS and methylation microarrays indicate that B-cell ontogenesis involves an extensive and gradual reconfiguration of the DNA methylome. We uncovered that non-CpG methylation at CpApC trinucleotides is present in progenitor cells and disappears upon B-cell commitment independently of CpG demethylation. CpG methylation, in contrast, changed extensively during the entire B-cell maturation program, with one quarter of all measured CpGs showing dynamic methylation. B-cell enhancers suffered more extensive methylation changes than promoter regions, especially in the early differentiation steps up to the germinal center B-cell (gcBC) stage, and their demethylation seemed to be mediated by binding of lineage-specific transcription factors. Enhancers with dynamic methylation were related to genes involved in a large B-cell network that showed high gene expression variability throughout differentiation. In highly proliferative gcBCs, we observed a shift of dynamic methylation from regulatory towards non-functional elements; gcBCs start to undergo global demethylation of late-replicating heterochromatic regions and methylation of polycomb-repressed regions. This signature becomes particularly extensive in long-lived memory B cells and plasma cells, indicating that these changes start in highly proliferative cells and then accumulate in non-proliferative cells with extended lifespan. Conclusion: Our epigenomic analysis of the B-cell differentiation program extends our knowledge on how the DNA methylome is modulated during cell specification and maturation and offers a resource for researchers in the field, both at global and single gene levels. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5641-5641 ◽  
Author(s):  
Haiming Chen ◽  
Mingjie Li ◽  
Eric Sanchez ◽  
Cathy S Wang ◽  
Kyle A Udd ◽  
...  

Abstract Introduction: B-cell maturation antigen (BCMA) has been shown to be highly expressed on the surface of tumor cells from patients (pts) with multiple myeloma (MM) and chronic lymphocytic leukemia (CLL) and is the target for therapeutic approaches in these diseases. Our group has shown that serum and plasma levels of BCMA correlate with disease status and survival in MM and CLL patients. We have recently shown that solubilized BCMA prevents its ligand B cell activating factor (BAFF) from binding and stimulating B-cells to produce polyclonal antibody. Recently, γ-secretase has been identified as the enzyme that leads to shedding of BCMA from off of B-cells. Gamma secretase is a multi-subunit protease complex that includes four individual proteins: presenilin-1 (PSEN1), nicastrin, anterior pharynx-defective 1 (APH-1), and presenilin enhancer 2 (PEN-2). CD147 is as a non-essential regulator of the complex. We examined gene expression of PSEN1, APH-1, PEN-2, and CD147 in MM pts with progressive (PD) and in complete remission (CR). We also determined the effects of the gamma secretase inhibitor (GSI) LSN424354 (Eli Lilly), a selective small-molecule inhibitor, on solubilized BCMA levels in MM and CLL tumor cells. Methods: Bone marrow (BM) mononuclear cells (MCs) were isolated from MM pts following Western Institutional Review Board (WIRB) approval and informed consent in accordance with the Declaration of Helsinki. Total RNA was extracted using the Qiagen RNeasy kit (Qiagen, Louisville, KY 40219) following the manufacturer's instructions. Quantitative PCR (qPCR) was applied to measure the relative abundance of human PSEN1, APH-1, PEN-2, and CD147 mRNA compared to that of the housekeeping gene HPRT mRNA. qPCR was performed using TaqMan technology on an OneStepPlus instrument (Life Technology, Grand Island, NY 14072) and followed the standard procedure. Peripheral blood MCs were obtained from patients with CLL. The human MM LAGκ-1A xenograft was grown in the left superficial gluteal muscle of SCID mice for six weeks and removed. Single-cell suspensions were prepared. LAGκ-1A or CLL tumor cells were treated with the GSI LSN424354 in a concentration dependent fashion, and BCMA levels were determined using an ELISA (R&D Systems, Minneapolis, MN) assay. MM tumor cells were treated with the LSN424354 and performed non-radioactive MTS cell proliferation assay following a standard MTS protocol. Results: qPCR showed PEN-2 gene expression was slightly increased among MM patients in PD compared to those in CR or normal subjects whereas there was no change in expression of the PSEN1 or APH1 genes. CD147 gene expression was markedly increased in MM pts in PD (n=25) compared to those in CR (n=18; P=0.005) or MGUS (n=9; P=0.005). Next, we determined the effect of the GSI LSN424354 on cultured MM or CLL tumor cells. The GSI inhibitor LSN424354 markedly reduced BCMA levels (> 90%) in supernatants from human MM LAGκ-1A cells after 5 days of tissue culture in a dose dependent fashion at concentrations ranging from 100 pM to 10 nM. Similarly, freshly obtained CLL tumor cells exposed to LSN424354 at concentrations similarly from 100 pM to 10 nM also showed a marked reduction (also > 90%) in supernatant BCMA levels. Notably, MTS assay results showed LSN424354 did not inhibit cell proliferation in MM or CLL tumor cells at concentrations up to 100 nM. Conclusion: Gamma secretase sheds BCMA off of B-cells. CD147, a regulator of gamma secretase activity, shows markedly higher gene expression in MM pts with PD compared to those in CR or MGUS individuals. The GSI LSN424354 reduces solubilized BCMA from tumor cells from CLL patients and human MM xenografts. Since CD147 has been shown to be present in serum, we are currently evaluating CD147 in serum samples from pts with MM and other plasma cell dyscrasias. In addition, we are examining the expression of BCMA on the surface of tumor cells from MM and CLL pts following exposure to BCMA, whether this GSI by reducing solubilized BCMA levels can reverse the immune dysfunction in mice bearing MM, and improve the efficacy of anti-BCMA antibody therapies. Disclosures Berenson: OncoTracker: Employment, Equity Ownership.


Author(s):  
Hamish W King ◽  
Nara Orban ◽  
John C Riches ◽  
Andrew J Clear ◽  
Gary Warnes ◽  
...  

AbstractIn response to antigen challenge, B cells clonally expand, undergo selection and differentiate to produce mature B cell subsets and high affinity antibodies. However, the interplay between dynamic B cell states and their antibody-based selection is challenging to decipher in primary human tissue. We have applied an integrated analysis of bulk and single-cell antibody repertoires paired with single-cell transcriptomics of human B cells undergoing affinity maturation. We define unique gene expression and antibody repertoires of known and novel B cell states, including a pre-germinal centre state primed to undergo class switch recombination. We dissect antibody class-dependent gene expression of germinal centre and memory B cells to find that class switching prior to germinal centre entry dictates the capacity of B cells to undergo antibody-based selection and differentiate. Together, our analyses provide unprecedented resolution into the gene expression and selection dynamics that shape B cell-mediated immunity.


Sign in / Sign up

Export Citation Format

Share Document