Three-Dimensional Reorganization of the Genome During B Cell Affinity Maturation

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 279-279
Author(s):  
Karen L. Bunting ◽  
David Soong ◽  
Yanwen Jiang ◽  
Brandon L. Swed ◽  
Katerina Hatzi ◽  
...  

Abstract Abstract 279 B cell affinity maturation is fundamental to the development of humoral immunity. To create a diverse antibody repertoire, B cells activated in the germinal centre (GC) must undergo a profound change in phenotype. This unique phenotypic change, which features simultaneous proliferation and somatic hypermutation and which can predispose to the development of lymphoma, requires radically altered gene expression programming in GC B cells. However, the way that this gene expression program is coordinated is unknown. Emerging evidence suggests that the higher-order organization of chromatin plays a role in the co-regulation of genes. We hypothesised that the three-dimensional organization of genes and chromosomes in the nucleus of B cells plays a key role in the epigenetic and transcriptional reprogramming that underlies acquisition of the GC B cell phenotype during B cell maturation. Using genome-wide mapping of chromatin interactions (Hi-C), combined with genome-wide profiles of gene expression (RNA-seq), histone modifications and transcription factor binding (ChIP-seq) in human naïve B (NB) and GC B cells, we have discovered that the three-dimensional structure of the genome undergoes widespread reorganization during B cell maturation to coordinate the GC transcriptional programme. Conformational maps of chromosome folding in these cells reveal a novel and profound loss of inter-arm interactions, reflecting lower chromosome compaction in GC B cells. Remarkably, we observed extensive differential partitioning of genes into NB- and GC B cell-specific compartments, and demonstrate for the first time that coordinated changes in histone modifications (H3K4Me2: P=3×10−35; H3K27Ac: P=3×10−33; Fisher's exact test) and transcription (P=1×10−9) required for cell type specification is mediated by the de novo formation of precisely delimited chromosome neighbourhoods. Most strikingly, we find that remodelling of the GC B cell genome involves the specific structural unlocking of genes that drive the GC transcriptional programme, such as AICDA, MTA3, and BCL6. Coordinate activation of these genes is mediated by the expansion of gene interaction neighbourhoods, increased promoter interactivity (P=3×10−35), engagement of long-range enhancer-promoter interactions (>2-fold increase), and the formation of gene body loops (P=3.18×10−15). Intriguingly, the master regulator of GC B cell differentiation, BCL6, shows a high propensity for all of these different types of interactions, suggesting that regulation of this gene in the context of chromatin is highly complex. Integration with genome-wide binding data for the structural organizing proteins, CTCF and cohesin, as well as the cell-specific factor, PU.1, supports a specific role for these proteins in the repositioning of activated promoters and enhancer regions during B cell maturation. This study shows for the first time that the architecture of the genome is critical for specification of cellular phenotype, and that epigenetic and transcriptional reprogramming in GC B cells is functionally linked to the structural reorganization of genes in the nucleus. Importantly, the higher-order organization of chromatin could represent a novel mechanism by which GC B cell gene expression is dysregulated in lymphoma. Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Vol 6 (56) ◽  
pp. eabe6291 ◽  
Author(s):  
Hamish W. King ◽  
Nara Orban ◽  
John C. Riches ◽  
Andrew J. Clear ◽  
Gary Warnes ◽  
...  

Protective humoral memory forms in secondary lymphoid organs where B cells undergo affinity maturation and differentiation into memory or plasma cells. Here, we provide a comprehensive roadmap of human B cell maturation with single-cell transcriptomics matched with bulk and single-cell antibody repertoires to define gene expression, antibody repertoires, and clonal sharing of B cell states at single-cell resolution, including memory B cell heterogeneity that reflects diverse functional and signaling states. We reconstruct gene expression dynamics during B cell activation to reveal a pre–germinal center state primed to undergo class switch recombination and dissect how antibody class–dependent gene expression in germinal center and memory B cells is linked with a distinct transcriptional wiring with potential to influence their fate and function. Our analyses reveal the dynamic cellular states that shape human B cell–mediated immunity and highlight how antibody isotype may play a role during their antibody-based selection.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1179-1179
Author(s):  
Zhongfa Yang ◽  
Yu Zhu ◽  
Rachel Gerstein ◽  
Alan G. Rosmarin

Abstract B lymphocytes develop in the bone marrow and later encounter antigen in lymph nodes, where they complete their development as plasma cells or B memory cells. Several key transcription factors have been identified that are required for B cell development, including Pax5, BCL6, C-MYC, and others. GABP is a tetrameric ets transcription factor that includes the DNA-binding GABP alpha protein, and the unrelated protein, GABP beta, which contains multimerization and transcriptional activation domains. GABP plays key roles in cell cycle control and mitochondrial biogenesis. It is also required for lineage specific gene expression, and it was previously shown to control gene expression of the IL-7 receptor and Pax5, both of which are required for lymphocyte development. Disruption of mouse Gabpα caused cell cycle arrest in hematopoietic stem cells (HSC), profound loss of progenitor cells, and aberrant myeloid differentiation. We created a conditional knockout model of Gabpα in B lymphocytes by breeding mice with lox-P flanked Gabpa to mice that bear Cre recombinase knocked into the B-cell specific CD19 locus; the mice also carry the Rosa 26 lox-STOP-lox YFP transgene, which permits identification and isolation of individual Gabpα null cells, based on expression of YFP. Loss of Gabpα was highly lineage specific for B lymphocytes. Gabpa null mice were healthy and vigorous through young adulthood, but some developed rectal prolapse by nine months of age, and necropsy demonstrated thinning of the intestinal wall and loss of Peyer's Patches and other lymphoid tissue. We immunologically characterized mice between 6 and 8 weeks of age, in order to minimize secondary effects of the inflammatory process associated with rectal prolapse. There was no deletion of Gabpα in T lymphocytes, and no discernable effect on T-cell subpopulations. We observed a significant reduction in Gabpα null (YFP+) B cells, in comparison with the Gabpα replete (YFP-) B cells in bone marrow and spleen. Gabpα null cells contributed to the pro-B cell population, but there was a progressively reduced contribution of Gabpα null cells to later stages of B cell maturation. We detected no Gabpα null cells among mature naive IgD+/IgM+ B cells, indicating a profound block in B cell maturation in cells that lack Gabpα. Importantly, no YFP+ CD138+ cells were detected, indicating that Gabpα null cells could not contribute to plasma cell development. We conclude that Gabp is required for full B cell maturation and plasma cell development in mice, and that its deletion is associated with loss of Peyer's Patches and rectal prolapse. GABP was previously shown to regulate expression of IL-7R and Pax5, which are expressed in lymphoid progenitor cells long before activation of CD19 expression. Thus, failure of B cell development and plasma cell formation in this CD19-Cre Gabpα null model is independent of the effect of GABP on those other B cell factors, and indicates a new, critical role for GABP in later stages of B cell and plasma cell development. Although rectal prolapse has been observed in mice with T cell defects, this represents the first demonstration that B cell defects cause such a phenotype. Disclosures Gerstein: Vertex Pharmaceuticals: Other: employer of spouse.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5641-5641 ◽  
Author(s):  
Haiming Chen ◽  
Mingjie Li ◽  
Eric Sanchez ◽  
Cathy S Wang ◽  
Kyle A Udd ◽  
...  

Abstract Introduction: B-cell maturation antigen (BCMA) has been shown to be highly expressed on the surface of tumor cells from patients (pts) with multiple myeloma (MM) and chronic lymphocytic leukemia (CLL) and is the target for therapeutic approaches in these diseases. Our group has shown that serum and plasma levels of BCMA correlate with disease status and survival in MM and CLL patients. We have recently shown that solubilized BCMA prevents its ligand B cell activating factor (BAFF) from binding and stimulating B-cells to produce polyclonal antibody. Recently, γ-secretase has been identified as the enzyme that leads to shedding of BCMA from off of B-cells. Gamma secretase is a multi-subunit protease complex that includes four individual proteins: presenilin-1 (PSEN1), nicastrin, anterior pharynx-defective 1 (APH-1), and presenilin enhancer 2 (PEN-2). CD147 is as a non-essential regulator of the complex. We examined gene expression of PSEN1, APH-1, PEN-2, and CD147 in MM pts with progressive (PD) and in complete remission (CR). We also determined the effects of the gamma secretase inhibitor (GSI) LSN424354 (Eli Lilly), a selective small-molecule inhibitor, on solubilized BCMA levels in MM and CLL tumor cells. Methods: Bone marrow (BM) mononuclear cells (MCs) were isolated from MM pts following Western Institutional Review Board (WIRB) approval and informed consent in accordance with the Declaration of Helsinki. Total RNA was extracted using the Qiagen RNeasy kit (Qiagen, Louisville, KY 40219) following the manufacturer's instructions. Quantitative PCR (qPCR) was applied to measure the relative abundance of human PSEN1, APH-1, PEN-2, and CD147 mRNA compared to that of the housekeeping gene HPRT mRNA. qPCR was performed using TaqMan technology on an OneStepPlus instrument (Life Technology, Grand Island, NY 14072) and followed the standard procedure. Peripheral blood MCs were obtained from patients with CLL. The human MM LAGκ-1A xenograft was grown in the left superficial gluteal muscle of SCID mice for six weeks and removed. Single-cell suspensions were prepared. LAGκ-1A or CLL tumor cells were treated with the GSI LSN424354 in a concentration dependent fashion, and BCMA levels were determined using an ELISA (R&D Systems, Minneapolis, MN) assay. MM tumor cells were treated with the LSN424354 and performed non-radioactive MTS cell proliferation assay following a standard MTS protocol. Results: qPCR showed PEN-2 gene expression was slightly increased among MM patients in PD compared to those in CR or normal subjects whereas there was no change in expression of the PSEN1 or APH1 genes. CD147 gene expression was markedly increased in MM pts in PD (n=25) compared to those in CR (n=18; P=0.005) or MGUS (n=9; P=0.005). Next, we determined the effect of the GSI LSN424354 on cultured MM or CLL tumor cells. The GSI inhibitor LSN424354 markedly reduced BCMA levels (> 90%) in supernatants from human MM LAGκ-1A cells after 5 days of tissue culture in a dose dependent fashion at concentrations ranging from 100 pM to 10 nM. Similarly, freshly obtained CLL tumor cells exposed to LSN424354 at concentrations similarly from 100 pM to 10 nM also showed a marked reduction (also > 90%) in supernatant BCMA levels. Notably, MTS assay results showed LSN424354 did not inhibit cell proliferation in MM or CLL tumor cells at concentrations up to 100 nM. Conclusion: Gamma secretase sheds BCMA off of B-cells. CD147, a regulator of gamma secretase activity, shows markedly higher gene expression in MM pts with PD compared to those in CR or MGUS individuals. The GSI LSN424354 reduces solubilized BCMA from tumor cells from CLL patients and human MM xenografts. Since CD147 has been shown to be present in serum, we are currently evaluating CD147 in serum samples from pts with MM and other plasma cell dyscrasias. In addition, we are examining the expression of BCMA on the surface of tumor cells from MM and CLL pts following exposure to BCMA, whether this GSI by reducing solubilized BCMA levels can reverse the immune dysfunction in mice bearing MM, and improve the efficacy of anti-BCMA antibody therapies. Disclosures Berenson: OncoTracker: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 565-565
Author(s):  
Zhaohui Gu ◽  
Michelle L. Churchman ◽  
Kathryn G. Roberts ◽  
Ian Moore ◽  
Xin Zhou ◽  
...  

Abstract Introduction B progenitor acute lymphoblastic leukemia (B-ALL) is a leading cause of childhood cancer death. Many chimeric genes have been identified and led to a refined classification of B-ALL and tailored therapies. Still, up to 30% of B-ALL cannot be classified into established subtypes, and the outcome for many is poor. Methods To identify novel subtypes of B-ALL, we performed integrative genomic analysis including transcriptome sequencing (RNA-seq) of 1,988 cases from St. Jude, Children's Oncology Group and adult cooperative group studies and analyzed chromosomal rearrangements, gene-expression profiles (GEP), somatic mutations and chromosome-level copy-number alterations. Cases lacking known or putative subtype-defining alterations underwent whole genome sequencing. Effects on proliferation and transformation of novel lesions were assessed by retroviral expression in cell lines and point-mutation knock-in mice using CRISPR/Cas9 genome editing. Results Using integrated genetic alterations and gene expression profiling, we classified 23 B-ALL subtypes (Table and Figure). Three groups included cases with similar GEP as canonical subtypes (ETV6-RUNX1, KMT2A-rearranged, and ZNF384-rearranged), but lacking the expected drivers (e.g., ETV6-RUNX1-like, n=42). Eighteen cases (0.9%) had rearrangements of BCL2, MYC and/or BCL6 showing a distinct GEP; they were mostly adults (n=16) with very poor outcome. These alterations, rarely seen in ALL, are identical to those observed in "double/triple hit" lymphoma, and are of pre-B immunophenotype. Eight cases with tightly clustered GEP comprised a novel subtype defined by IKZF1 N159Y missense mutation. N159Y is in the DNA-binding domain of IKZF1, and is known to perturb IKZF1 function, with distinct nuclear mislocalization and induction of aberrant intercellular adhesion. We identified two subtypes with distinct GEP characterized by PAX5 alterations. One, herein termed PAX5 altered (PAX5alt), comprised 148 (7.4%) cases, was characterized by diverse PAX5 alterations including rearrangements (n=57), sequence mutations (n=46) and/or focal intragenic amplifications (n=8). These PAX5 alterations were found in 73.6% of PAX5alt cases and different alteration types were mutually exclusive. Other PAX5 alterations, including deletions and large-scale amplifications were also assessed using SNP array, but were not enriched in the PAX5alt group. Clinically, PAX5alt pediatric and adult patients had favorable (96.8±3.2%) and intermediate (42.1±10.2%) 5-year overall survival (OS), respectively. The other GEP distinct subtype comprised 44 cases, all with PAX5 P80R missense mutations. In 30 of these cases, PAX5 P80R was homozygous due to deletion of the wild-type (WT) PAX5 allele or copy-neutral loss of heterozygosity. Of the other 14 cases with heterozygous PAX5 P80R mutations, 13 had a second frameshift (n=7), nonsense (n=2) or deleterious missense (n=4) PAX5 mutation. Four of the remaining 1,944 cases also had the PAX5 P80R mutation, but all were heterozygous with preservation of a WT PAX5 allele, consistent with the notion that homozygous or compound heterozygous PAX5 P80R mutation is the hallmark of this subtype. Adult PAX5 P80R cases (n=14) showed better 5-year OS (61.9±13.4%) than those in PAX5alt subtype (42.1±10.2%). To examine the effects of PAX5 P80R on B-cell maturation, WT PAX5, PAX5 P80R, V26G and P34Q were expressed in Pax5-/- lineage-depleted bone marrow cells. Expression of WT PAX5, PAX5 V26G and P34Q resulted in near complete rescue of B cell differentiation; however, expression of PAX5 P80R blocked the differentiation at the pre-pro-B stage of B-cell maturation. Further, Pax5 P80R heterozygous or homozygous mice developed pre-B-ALL with a median latency of 166 and 87 days, respectively, with heterozygous mice acquiring alterations on the second allele. In contrast, Pax5+/- mice, and those harboring G183S mutation observed in familial leukemia, do not spontaneously develop B-ALL. Conclusions These results show the utility of transcriptome sequencing in defining subtypes and founding genetic alterations in B-ALL, provide a revised taxonomy of the disease across the age spectrum, and reinforce the central role of PAX5 as a checkpoint in B lymphoid maturation and leukemogenesis. Disclosures McKay: ImmunoGen Inc.: Employment. Tallman:Orsenix: Other: Advisory board; AROG: Research Funding; BioSight: Other: Advisory board; Cellerant: Research Funding; AbbVie: Research Funding; Daiichi-Sankyo: Other: Advisory board; ADC Therapeutics: Research Funding. Stock:Jazz Pharmaceuticals: Consultancy. Konopleva:Stemline Therapeutics: Research Funding. Relling:Shire Pharmaceuticals: Research Funding. Mullighan:Cancer Prevention and Research Institute of Texas: Consultancy; Amgen: Honoraria, Speakers Bureau; Abbvie: Research Funding; Loxo Oncology: Research Funding; Pfizer: Honoraria, Research Funding, Speakers Bureau.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e19521-e19521
Author(s):  
Bartlomiej Przychodzen

e19521 Background: Histone deacetylase inhibitors (HDACi) are small molecules that increase acetylation of lysine residues by blocking histone deactylases. These anticancer agents affect epigenetic and non-epigenetic gene expression resulting in cell cycle arrest of cancer cells. Furthermore HDACi can enhance its anti-tumor effects via the pharmacologic modulation of macrophage. Some HDACi’s such as Trichostatin A (TSA) can also affected the tumor immune microenvironment by suppressing the activity of infiltrating macrophages and inhibiting myeloid-derived suppressor cell recruiement (Li et al.,). Methods: We conducted a high throughput screen comparing gene expression profiles in known hematological cell lines to identify transcriptional signatures associated with TSA sensitivity obtained from GDSC. Results: We selected genes that showed at least 2fold expression difference and were statistically significant (p < 0.05). We identified 49 genes that were upregulated and 85 that were downregulated. The most significant results include multiple genes known to be correlated with the B-cell maturation process. We found that CD24 a small GPI linked glycoprotein expressed at the surface of most B lymphocyte precursors, neutrophils, epithelial cells and frequently found to be highly expressed in various hematological and solid neoplasms, was up/downregulatred by XX. Interestingly, CD24 plays a role in the activation and differentiation of the cells as bone marrow samples lacking CD24 resulted in decreased numbers of both pre-B and immature B-cell populations. We also found that IKZF2, a transcription factor regulating lymphocyte development and queiesence and which is frequently deleted in hypodiploid B-ALLs. This result could revelent as other reports suggest a role of IKZF2 as a tumor suppressor with a central role regulating the balance of self-renewal and differentiation in leukemic stem cells. Conclusions: Our study identified transcriptional profiles which suggest that TSA sensitivity could be related to B cell maturation. Further experiments warrant replication of these findings which could prove useful in creating optimal, TSA-based treatments acting either as potent single agents or in combination enhancing anti-tumor effects of immunotherapies.


Gut ◽  
2020 ◽  
Vol 69 (12) ◽  
pp. 2203-2213 ◽  
Author(s):  
Anton Lutckii ◽  
Benedikt Strunz ◽  
Anton Zhirkov ◽  
Olga Filipovich ◽  
Elena Rukoiatkina ◽  
...  

ObjectivesVertical transmission of hepatitis C virus (HCV) is rare compared with other chronic viral infections, despite that newborns have an immature, and possibly more susceptible, immune system. It further remains unclear to what extent prenatal and perinatal exposure to HCV affects immune system development in neonates.DesignTo address this, we studied B cells, innate immune cells and soluble factors in a cohort of 62 children that were either unexposed, exposed uninfected or infected with HCV. Forty of these infants were followed longitudinally from birth up until 18 months of age.ResultsAs expected, evidence for B cell maturation was observed with increased age in children, whereas few age-related changes were noticed among innate immune cells. HCV-infected children had a high frequency of HCV-specific IgG-secreting B cells. Such a response was also detected in some exposed but uninfected children but not in uninfected controls. Consistent with this, both HCV-exposed uninfected and HCV-infected infants had evidence of early B cell immune maturation with an increased proportion of IgA-positive plasma cells and upregulated CD40 expression. In contrast, actual HCV viraemia, but not mere exposure, led to alterations within myeloid immune cell populations, natural killer (NK) cells and a distinct soluble factor profile with increased levels of inflammatory cytokines and chemokines.ConclusionOur data reveal that exposure to, and infection with, HCV causes disparate effects on adaptive B cells and innate immune cell such as myeloid cells and NK cells in infants.


2000 ◽  
Vol 192 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Jeffrey S. Thompson ◽  
Pascal Schneider ◽  
Susan L. Kalled ◽  
LiChun Wang ◽  
Eric A. Lefevre ◽  
...  

The tumor necrosis factor (TNF) family member B cell activating factor (BAFF) binds B cells and enhances B cell receptor–triggered proliferation. We find that B cell maturation antigen (BCMA), a predicted member of the TNF receptor family expressed primarily in mature B cells, is a receptor for BAFF. Although BCMA was previously localized to the Golgi apparatus, BCMA was found to be expressed on the surface of transfected cells and tonsillar B cells. A soluble form of BCMA, which inhibited the binding of BAFF to a B cell line, induced a dramatic decrease in the number of peripheral B cells when administered in vivo. Moreover, culturing splenic cells in the presence of BAFF increased survival of a percentage of the B cells. These results are consistent with a role for BAFF in maintaining homeostasis of the B cell population.


2006 ◽  
Vol 43 (9) ◽  
pp. 1316-1324 ◽  
Author(s):  
Ingela Wikström ◽  
Ingela Bergqvist ◽  
Dan Holmberg ◽  
Johan Forssell

2019 ◽  
Author(s):  
Samantha A. Swenson ◽  
Tyler J. Gilbreath ◽  
Heather Vahle ◽  
R. Willow Hynes-Smith ◽  
Jared H. Graham ◽  
...  

ABSTRACTCoordination of a number of molecular mechanisms including transcription, alternative splicing, and class switch recombination are required to facilitate development, activation, and survival of B cells. Disruption of these pathways can result in malignant transformation. Recently, next generation sequencing has identified a number of novel mutations in mantle cell lymphoma (MCL) patients including the ubiquitin E3 ligase UBR5. Approximately 18% of MCL patients were found to have mutations in UBR5 with the majority of mutations within the HECT domain of the protein which can accept and transfer ubiquitin molecules to the substrate. Determining if UBR5 controls the maturation of B cells is important to fully understand malignant transformation to MCL. To elucidate the role of UBR5 in B cell maturation and activation we generated a conditional mutant disrupting UBR5’s C-terminal HECT domain. Loss of the UBR5 HECT domain leads to a block in maturation of B cells in the spleen and up-regulation of proteins associated with mRNA splicing via the spliceosome. Our studies reveal a novel role of UBR5 in B cell maturation by regulating alternative splicing of key transcripts during B cell development and suggests UBR5 mutations may promote mantle cell lymphoma initiation.KEY POINTSUtilizing a novel mouse model mimicking MCL patient mutations, the loss of UBR5’s HECT domain causes alterations in B cell development.UBR5 mutations lead to stabilization of UBR5 and aberrant splicing.


2017 ◽  
Author(s):  
Joanne Dai ◽  
Micah A. Luftig

AbstractApoptosis is critical to B-cell maturation, but studies of apoptotic regulation in primary human B cells is lacking. Previously, we found that infecting human B cells with Epstein-Barr virus induces two different survival strategies (Priceet al., 2017). Here, we sought to better understand the mechanisms of apoptotic regulation in normal and activated B cells. Using intracellular BH3 profiling (iBH3), we defined the Bcl2-dependency of B-cell subsets from human peripheral blood and tonsillar lymphoid tissue as well as mitogen-activated B cells. We found that naïve and memory B cells were BCL-2 dependent, while germinal center B cells were MCL-1 dependent and plasma cells were BCL-XL dependent. Proliferating B cells activated by CpG or CD40L/IL-4 became more dependent upon MCL-1 and BCL-XL. As B-cell lymphomas often rely on survival mechanisms derived from normal and activated B cells, these findings offer new insight into potential therapeutic strategies for lymphomas.


Sign in / Sign up

Export Citation Format

Share Document