Expression of interleukin-9 receptor alpha on germinal center B cells: Potential role for interleukin-9 in B cell maturation

2002 ◽  
Vol 109 (1) ◽  
pp. S356-S357
Author(s):  
Lama Fawaz ◽  
Abdelilah Soussi-Gounni ◽  
Qutayba A Hamid ◽  
Bruce D Mazer
2021 ◽  
Vol 6 (56) ◽  
pp. eabe6291 ◽  
Author(s):  
Hamish W. King ◽  
Nara Orban ◽  
John C. Riches ◽  
Andrew J. Clear ◽  
Gary Warnes ◽  
...  

Protective humoral memory forms in secondary lymphoid organs where B cells undergo affinity maturation and differentiation into memory or plasma cells. Here, we provide a comprehensive roadmap of human B cell maturation with single-cell transcriptomics matched with bulk and single-cell antibody repertoires to define gene expression, antibody repertoires, and clonal sharing of B cell states at single-cell resolution, including memory B cell heterogeneity that reflects diverse functional and signaling states. We reconstruct gene expression dynamics during B cell activation to reveal a pre–germinal center state primed to undergo class switch recombination and dissect how antibody class–dependent gene expression in germinal center and memory B cells is linked with a distinct transcriptional wiring with potential to influence their fate and function. Our analyses reveal the dynamic cellular states that shape human B cell–mediated immunity and highlight how antibody isotype may play a role during their antibody-based selection.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lucía del Pino-Molina ◽  
Eduardo López-Granados ◽  
Quentin Lecrevisse ◽  
Juan Torres Canizales ◽  
Martín Pérez-Andrés ◽  
...  

IntroductionCommon Variable Immunodeficiency (CVID) is characterized by defective antibody production and hypogammaglobulinemia. Flow cytometry immunophenotyping of blood lymphocytes has become of great relevance for the diagnosis and classification of CVID, due to an impaired differentiation of mature post-germinal-center (GC) class-switched memory B-cells (MBC) and severely decreased plasmablast/plasma cell (Pb) counts. Here, we investigated in detail the pre-GC B-cell maturation compartment in blood of CVID patients.MethodsIn this collaborative multicentric study the EuroFlow PID 8-color Pre-GC B-cell tube, standardized sample preparation procedures (SOPs) and innovative data analysis tools, were used to characterize the maturation profile of pre-GC B-cells in 100 CVID patients, vs 62 age-matched healthy donors (HD).ResultsThe Pre-GC B-cell tube allowed identification within pre-GC B-cells of three subsets of maturation associated immature B-cells and three subpopulations of mature naïve B-lymphocytes. CVID patients showed overall reduced median absolute counts (vs HD) of the two more advanced stages of maturation of both CD5+ CD38+/++ CD21het CD24++ (2.7 vs 5.6 cells/µl, p=0.0004) and CD5+ CD38het CD21+ CD24+ (6.5 vs 17 cells/µl, p<0.0001) immature B cells (below normal HD levels in 22% and 37% of CVID patients). This was associated with an expansion of CD21-CD24- (6.1 vs 0.74 cells/µl, p<0.0001) and CD21-CD24++ (1.8 vs 0.4 cells/µl, p<0.0001) naïve B-cell counts above normal values in 73% and 94% cases, respectively. Additionally, reduced IgMD+ (21 vs 32 cells/µl, p=0.03) and IgMD- (4 vs 35 cells/µl, p<0.0001) MBC counts were found to be below normal values in 25% and 77% of CVID patients, respectively, always together with severely reduced/undetectable circulating blood pb. Comparison of the maturation pathway profile of pre-GC B cells in blood of CVID patients vs HD using EuroFlow software tools showed systematically altered patterns in CVID. These consisted of: i) a normally-appearing maturation pathway with altered levels of expression of >1 (CD38, CD5, CD19, CD21, CD24, and/or smIgM) phenotypic marker (57/88 patients; 65%) for a total of 3 distinct CVID patient profiles (group 1: 42/88 patients, 48%; group 2: 8/88, 9%; and group 3: 7/88, 8%) and ii) CVID patients with a clearly altered pre-GC B cell maturation pathway in blood (group 4: 31/88 cases, 35%).ConclusionOur results show that maturation of pre-GC B-cells in blood of CVID is systematically altered with up to four distinctly altered maturation profiles. Further studies, are necessary to better understand the impact of such alterations on the post-GC defects and the clinical heterogeneity of CVID.


Blood ◽  
1996 ◽  
Vol 87 (2) ◽  
pp. 465-471 ◽  
Author(s):  
B Falini ◽  
B Bigerna ◽  
L Pasqualucci ◽  
M Fizzotti ◽  
MF Martelli ◽  
...  

The BCL-6 gene encoding a nuclear-located Kruppel-type zinc finger protein is rearranged in about 30% diffuse large B-cell lymphomas and is expressed predominantly in normal germinal center B cells and related lymphomas. These findings suggest that BCL-6 may play a role in regulating differentiation of normal germinal center B cells and that its deregulated expression caused by rearrangements may contribute to lymphomagenesis. This prompted us to investigate the expression of the BCL-6 protein in Hodgkin's disease (HD), focusing on the nodular lymphocyte predominance subtype (NLPHD), which differs from classical HD by virtue of the B-cell nature of the malignant cell population (so- called L&H cells) and its relationship with germinal centers. Forty-one HD samples (19 NLPHD, 12 nodular sclerosis, and 10 mixed cellularity) were immunostained with the monoclonal antibodies PG-B6 and PG-B6p that react with a fixative-sensitive and a formalin-resistant epitope on the aminoterminal region of the BCL-6 gene product, respectively. Strong nuclear positivity for the BCL-6 protein was detected in tumor (L&H) cells in all cases of NLPHD. In contrast, BCL-6 was expressed only in a small percentage of Hodgkin and Reed-Sternberg cells in about 30% of classical HD cases. Notably, the nuclei of reactive CD3+/CD4+ T cells nearby to and rosetting around L&H cells in NLPHD were also strongly BCL-6+, but lacked CD40 ligand (CD40L) expression. This staining pattern clearly differed from that of classical HD, whose cellular background was made up of CD3+/CD4+ T cells showing the BCL-6-/CD40L+ phenotype. These results further support the concept that NLPHD is an histogenetically distinct, B-cell-derived subtype of HD and suggest a role for BCL-6 in its development.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Ting-ting Zhang ◽  
David G Gonzalez ◽  
Christine M Cote ◽  
Steven M Kerfoot ◽  
Shaoli Deng ◽  
...  

To reconcile conflicting reports on the role of CD40 signaling in germinal center (GC) formation, we examined the earliest stages of murine GC B cell differentiation. Peri-follicular GC precursors first expressed intermediate levels of BCL6 while co-expressing the transcription factors RelB and IRF4, the latter known to repress Bcl6 transcription. Transition of GC precursors to the BCL6hi follicular state was associated with cell division, although the number of required cell divisions was immunogen dose dependent. Potentiating T cell help or CD40 signaling in these GC precursors actively repressed GC B cell maturation and diverted their fate towards plasmablast differentiation, whereas depletion of CD4+ T cells promoted this initial transition. Thus while CD40 signaling in B cells is necessary to generate the immediate precursors of GC B cells, transition to the BCL6hi follicular state is promoted by a regional and transient diminution of T cell help.


Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 222-229 ◽  
Author(s):  
KF Norrback ◽  
K Dahlenborg ◽  
R Carlsson ◽  
G Roos

Abstract Activation of telomerase seems to be a prerequisite for immortalization and is found in permanent cell lines and most malignant tumors. Normal somatic cells are generally telomerase negative, except for bone marrow stem cells. Weak activity is also present in peripheral blood cells. In the present study strong telomerase activity was demonstrated in vivo in normal mature cells of the immune system, as well as in malignant lymphomas. Benign lymph nodes had lower telomerase activity than benign tonsils, which exhibited intermediate to high activity comparable with findings in malignant lymphomas. In benign tonsils the activity seemed to be restricted to germinal center B cells. In benign lymphoid tissues telomerase activity correlated with B-cell numbers and cell proliferation, but this was not observed in the lymphoma group. High- grade lymphomas exhibited higher levels of telomerase compared with low- grade cases. The data showed that in vivo activation of telomerase is a characteristic feature of germinal center B cells. Different signals for activation of telomerase are likely to exist, one of them being immune stimulation. The data suggest that telomerase activity in malignant lymphomas can be explained by an “induction and retention” model, ie, transformation occurs in a normal, mature B cell with reactivated telomerase, which is retained in the neoplastic clone.


Gut ◽  
2020 ◽  
Vol 69 (12) ◽  
pp. 2203-2213 ◽  
Author(s):  
Anton Lutckii ◽  
Benedikt Strunz ◽  
Anton Zhirkov ◽  
Olga Filipovich ◽  
Elena Rukoiatkina ◽  
...  

ObjectivesVertical transmission of hepatitis C virus (HCV) is rare compared with other chronic viral infections, despite that newborns have an immature, and possibly more susceptible, immune system. It further remains unclear to what extent prenatal and perinatal exposure to HCV affects immune system development in neonates.DesignTo address this, we studied B cells, innate immune cells and soluble factors in a cohort of 62 children that were either unexposed, exposed uninfected or infected with HCV. Forty of these infants were followed longitudinally from birth up until 18 months of age.ResultsAs expected, evidence for B cell maturation was observed with increased age in children, whereas few age-related changes were noticed among innate immune cells. HCV-infected children had a high frequency of HCV-specific IgG-secreting B cells. Such a response was also detected in some exposed but uninfected children but not in uninfected controls. Consistent with this, both HCV-exposed uninfected and HCV-infected infants had evidence of early B cell immune maturation with an increased proportion of IgA-positive plasma cells and upregulated CD40 expression. In contrast, actual HCV viraemia, but not mere exposure, led to alterations within myeloid immune cell populations, natural killer (NK) cells and a distinct soluble factor profile with increased levels of inflammatory cytokines and chemokines.ConclusionOur data reveal that exposure to, and infection with, HCV causes disparate effects on adaptive B cells and innate immune cell such as myeloid cells and NK cells in infants.


Sign in / Sign up

Export Citation Format

Share Document