scholarly journals CD8+ T cells specific for conserved coronavirus epitopes correlate with milder disease in COVID-19 patients

2021 ◽  
Vol 6 (61) ◽  
pp. eabg5669
Author(s):  
Vamsee Mallajosyula ◽  
Conner Ganjavi ◽  
Saborni Chakraborty ◽  
Alana M. McSween ◽  
Ana Jimena Pavlovitch-Bedzyk ◽  
...  

A central feature of the SARS-CoV-2 pandemic is that some individuals become severely ill or die, whereas others have only a mild disease course or are asymptomatic. Here we report development of an improved multimeric αβ T cell staining reagent platform, with each maxi-ferritin “spheromer” displaying 12 peptide-MHC complexes. Spheromers stain specific T cells more efficiently than peptide-MHC tetramers and capture a broader portion of the sequence repertoire for a given peptide-MHC. Analyzing the response in unexposed individuals, we find that T cells recognizing peptides conserved amongst coronaviruses are more abundant and tend to have a “memory” phenotype, compared to those unique to SARS-CoV-2. Significantly, CD8+ T cells with these conserved specificities are much more abundant in COVID-19 patients with mild disease versus those with a more severe illness, suggesting a protective role.

2000 ◽  
Vol 192 (4) ◽  
pp. 549-556 ◽  
Author(s):  
Bryan K. Cho ◽  
Varada P. Rao ◽  
Qing Ge ◽  
Herman N. Eisen ◽  
Jianzhu Chen

The developmental requirements for immunological memory, a central feature of adaptive immune responses, is largely obscure. We show that as naive CD8 T cells undergo homeostasis-driven proliferation in lymphopenic mice in the absence of overt antigenic stimulation, they progressively acquire phenotypic and functional characteristics of antigen-induced memory CD8 T cells. Thus, the homeostasis-induced memory CD8 T cells express typical memory cell markers, lyse target cells directly in vitro and in vivo, respond to lower doses of antigen than naive cells, and secrete interferon γ faster upon restimulation. Like antigen-induced memory T cell differentiation, the homeostasis-driven process requires T cell proliferation and, initially, the presence of appropriate restricting major histocompatibility complexes, but it differs by occurring without effector cell formation and without requiring interleukin 2 or costimulation via CD28. These findings define repetitive cell division plus T cell receptor ligation as the basic requirements for naive to memory T cell differentiation.


2019 ◽  
Author(s):  
Alphonsus H.C. Ng ◽  
Songming Peng ◽  
Alexander M. Xu ◽  
Won Jun Noh ◽  
Katherine Guo ◽  
...  

AbstractAdaptive immunity is based on peptide antigen recognition. Our ability to harness the immune system for therapeutic gain relies on the discovery of the T cell receptor (TCR) genes that selectively target antigens from infections, mutated proteins, and foreign agents. Here we present a method that selectively labels peptide antigen-specific CD8+ T-cells in human blood using magnetic nanoparticles functionalized with peptide-MHC tetramers, isolates these specific cells within an integrated microfluidic device, and directly amplifies the TCR genes for sequencing. Critically, the identity of the peptide recognized by the TCR is preserved, providing the link between peptide and gene. The platform requires inputs on the order of just 100,000 CD8+ T cells, can be multiplexed for simultaneous analysis of multiple peptides, and performs sorting and isolation on chip. We demonstrate 1000-fold sensitivity enhancement of antigen-specific T-cell receptor detection and simultaneous capture of two virus antigen-specific T-cell receptors from samples of human blood.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1076-1076
Author(s):  
Li Ma ◽  
Elisa K. Simpson ◽  
June Li ◽  
Guangheng Zhu ◽  
Pingguo Chen ◽  
...  

Abstract Background Immune thrombocytopenia (ITP) is a common bleeding disorder characterized by autoantibody mediated destruction of autologous platelets. The predominant autoantibody detected in ITP patients target the platelet Glycoprotein (GP)IIbIIIa, however autoantibodies can only be detected in 50-70% of patients. Cytotoxic CD8+ T-cells (CTL) may therefore also be a significant contributing factor for thrombocytopenia, either through direct cytotoxicity against platelets, or decreasing platelet production through interaction with megakaryocytes in the bone marrow. Nevertheless, whether CD8+ T cell mediated cytotoxicity significantly contributes to thrombocytopenia in ITP is controversial. Interestingly, CD8+ regulatory T cells have been demonstrated to play significant roles in other autoimmune diseases, but their function in the context of ITP has not been adequately examined. Methods and Results We developed both passive and active murine models to investigate mechanisms of pathogenesis and steroid treatment of ITP. In the passive model, we injected anti-b3 or anti-GPIb antibodies to induce thrombocytopenia; this causes transient antibody-mediated thrombocytopenia. We found that a single intraperitoneal (IP) injection of steroids post-antibody injection was effective at rescuing platelet counts. We also adapted an active model of ITP whereby wild-type (WT) BALB/c mice were transfused with splenocytes from WT platelet immunized β3-/- mice to induce thrombocytopenia. This model encompasses both antibody and cell-mediated ITP and causes sustained thrombocytopenia in the mice. In this model, we found steroid treatment administered either orally or through IP-injection were equally efficacious at ameliorating thrombocytopenia. The successful use of steroids to treat thrombocytopenia in these animal models is representative of the therapeutic effects of steroid treatment seen in human ITP patients. To study the role of CD8+ T-cells in the response to steroid treatments in ITP, we depleted CD8+ T-cells from splenocytes prior to transfusion into WT mice. Unexpectedly, we found CD8+ T cell depleted splenocyte (lacking in CTL cells), engrafted mice had lower, but not higher, platelet counts. They were also less responsive to dexamethasone treatment compared to non-depleted engrafted mice. Furthermore, transfusion of splenocytes from immunized β3-/- mice in conjunction with antigen-primed CD8+ T-cells (isolated from immunized β3-/- splenocytes) was able to rescue platelet counts in WT mice. Co-transfusion of non-primed CD8+ T cells from β3-/- mice could not rescue platelet counts. These results indicate that platelet-antigen specific CD8+ Tregs play a dominant protective role in attenuating platelet clearance. In further support of our observations, we detected significantly increased CD8+CD25+Foxp3+ Treg percentages in the blood, thymus and spleen of immunized β3-/- mice. Further in vitro splenocyte cultures demonstrated putative regulatory mechanisms of CD8+CD25+ Tregs from immunized β3-/- splenocytes. We found CD8+CD25+ Tregs significantly inhibited CD4+ T and CD19+ B cell proliferation, platelet apoptosis, and platelet associated IgG production in the presence of platelet-antigens, but increased the secretion of the anti-inflammatory cytokine IL-10. Conclusion To the best of our knowledge, these are the first reported animal models of steroid treatment of ITP. We demonstrated that steroid therapy was effective and CD8+ T cells are required for this efficacy. We further unveiled a population of CD8+ regulatory T-cells in the CD8+ T cell populations, which were able to rescue platelet counts. This suggests that CD8+CD25+Foxp3+Treg may impart a predominantly protective role, overcoming the cytotoxic function of CD8+ T-cells in ITP. These data provides significant insights into the understanding of immunopathogenesis of ITP, which may be important in designing effective therapy including the potential usage of CD8+ Tregs as a cellular therapeutic method against ITP. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (8) ◽  
pp. 2397-2402 ◽  
Author(s):  
Rui Rong Yuan ◽  
Phillip Wong ◽  
Michael R. McDevitt ◽  
Ekaterina Doubrovina ◽  
Ingrid Leiner ◽  
...  

Abstract Immunosuppressive agents in current use are nonspecific. The capacity to delete specific CD8 T-cell clones of unique specificity could prove to be a powerful tool for dissecting the precise role of CD8+ T cells in human disease and could form the basis for a safe, highly selective therapy of autoimmune disorders. Major histocompatibility complex (MHC) tetramers (multimeric complexes capable of binding to specific CD8 T-cell clones) were conjugated to 225Ac (an alpha-emitting atomic nanogenerator, capable of single-hit killing from the cell surface) to create an agent for CD8 T-cell clonal deletion. The “suicide” tetramers specifically bound to, killed, and reduced the function of their cognate CD8 T cells (either human anti–Epstein-Barr virus (EBV) or mouse anti-Listeria in 2 model systems) while leaving the nonspecific control CD8 T-cell populations unharmed. Such an approach may allow a pathway to selective ablation of pathogenic T-cell clones ex vivo or in vivo without disturbing general immune function.


Diabetes ◽  
1992 ◽  
Vol 41 (12) ◽  
pp. 1603-1608 ◽  
Author(s):  
B. J. Bradley ◽  
K. Haskins ◽  
F. G. La Rosa ◽  
K. J. Lafferty
Keyword(s):  
T Cells ◽  
T Cell ◽  

Sign in / Sign up

Export Citation Format

Share Document