scholarly journals AAV-delivered eCD4-Ig protects rhesus macaques from high-dose SIVmac239 challenges

2019 ◽  
Vol 11 (502) ◽  
pp. eaau5409 ◽  
Author(s):  
Matthew R. Gardner ◽  
Christoph H. Fellinger ◽  
Lisa M. Kattenhorn ◽  
Meredith E. Davis-Gardner ◽  
Jesse A. Weber ◽  
...  

A number of simian and simian human immunodeficiency viruses (SIV and SHIV, respectively) have been used to assess the efficacy of HIV-1 vaccine strategies. Among these, SIVmac239 is considered among the most stringent because, unlike SHIV models, its full genome has coevolved in its macaque host and its tier 3 envelope glycoprotein (Env) is exceptionally hard to neutralize. Here, we investigated the ability of eCD4-Ig, an antibody-like entry inhibitor that emulates the HIV-1 and SIV receptor and coreceptor, to prevent SIVmac239 infection. We show that rh-eCD4-IgI39N expressed by recombinant adeno-associated virus (AAV) vectors afforded four rhesus macaques complete protection from high-dose SIVmac239 challenges that infected all eight control macaques. However, rh-eCD4-IgI39N–expressing macaques eventually succumbed to serial escalating challenge doses that were 2, 8, 16, and 32 times the challenge doses that infected the control animals. Despite receiving greater challenge doses, these macaques had significantly lower peak and postpeak viral loads than the control group. Virus isolated from three of four macaques showed evidence of strong immune pressure from rh-eCD4-IgI39N, with mutations located in the CD4-binding site, which, in one case, exploited a point-mutation difference between rh-eCD4-IgI39N and rhesus CD4. Other escape pathways associated with clear fitness costs to the virus. Our data report effective protection of rhesus macaques from SIVmac239.

Author(s):  
Ryan S. Roark ◽  
Hui Li ◽  
Wilton B. Williams ◽  
Hema Chug ◽  
Rosemarie D. Mason ◽  
...  

ABSTRACTNeutralizing antibodies elicited by HIV-1 coevolve with viral Envs in distinctive patterns, in some cases acquiring substantial breadth. Here we show that primary HIV-1 Envs, when expressed by simian-human immunodeficiency viruses in rhesus macaques, elicited patterns of Env-antibody coevolution strikingly similar to those in humans. This included conserved immunogenetic, structural and chemical solutions to epitope recognition and precise Env-amino acid substitutions, insertions and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2-apex mode of recognition like that of human bNAbs PGT145/PCT64-35M. Another rhesus antibody bound the CD4-binding site by CD4 mimicry mirroring human bNAbs 8ANC131/CH235/VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.One sentence summaryVirus-antibody coevolution in rhesus macaques recapitulates developmental features of human antibodies.


Science ◽  
2020 ◽  
Vol 371 (6525) ◽  
pp. eabd2638
Author(s):  
Ryan S. Roark ◽  
Hui Li ◽  
Wilton B. Williams ◽  
Hema Chug ◽  
Rosemarie D. Mason ◽  
...  

Neutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. We report that primary HIV-1 envelope proteins—when expressed by simian-human immunodeficiency viruses in rhesus macaques—elicited patterns of Env-antibody coevolution very similar to those in humans, including conserved immunogenetic, structural, and chemical solutions to epitope recognition and precise Env–amino acid substitutions, insertions, and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2 apex mode of recognition like that of human broadly neutralizing antibodies (bNAbs) PGT145 and PCT64-35S. Another rhesus antibody bound the CD4 binding site by CD4 mimicry, mirroring human bNAbs 8ANC131, CH235, and VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tinashe E. Nyanhete ◽  
Robert J. Edwards ◽  
Celia C. LaBranche ◽  
Katayoun Mansouri ◽  
Amanda Eaton ◽  
...  

Broadly neutralizing antibodies (bNAbs), known to mediate immune control of HIV-1 infection, only develop in a small subset of HIV-1 infected individuals. Despite being traditionally associated with patients with high viral loads, bNAbs have also been observed in therapy naïve HIV-1+ patients naturally controlling virus replication [Virus Controllers (VCs)]. Thus, dissecting the bNAb response in VCs will provide key information about what constitutes an effective humoral response to natural HIV-1 infection. In this study, we identified a polyclonal bNAb response to natural HIV-1 infection targeting CD4 binding site (CD4bs), V3-glycan, gp120-gp41 interface and membrane-proximal external region (MPER) epitopes on the HIV-1 envelope (Env). The polyclonal antiviral antibody (Ab) response also included antibody-dependent cellular phagocytosis of clade AE, B and C viruses, consistent with both the Fv and Fc domain contributing to function. Sequence analysis of envs from one of the VCs revealed features consistent with potential immune pressure and virus escape from V3-glycan targeting bNAbs. Epitope mapping of the polyclonal bNAb response in VCs with bNAb activity highlighted the presence of gp120-gp41 interface and CD4bs antibody classes with similar binding profiles to known potent bNAbs. Thus, these findings reveal the induction of a broad and polyfunctional humoral response in VCs in response to natural HIV-1 infection.


2020 ◽  
Vol 20 ◽  
Author(s):  
Weihong Qu ◽  
Jianguo Zhao ◽  
Yaqing Wu ◽  
Ruian Xu ◽  
Shaowu Liu

Background:: Lung cancer remains the most common cause of cancer-related deaths in China and worldwide. Traditional surgery and chemotherapy do not offer an effective cure although gene therapy may be a promising future alter-native. Kallistatin (Kal) is an endogenous inhibitor of angiogenesis and tumorigenesis. Recombinant adeno-associated virus (rAAV) is considered the most promising vector for gene therapy of many diseases due to persistent and long-term transgen-ic expression. Objective:: The aim of this study was to investigate whether rAAV9-Kal inhibited NCI-H446 subcutaneous xenograft tumor growth in mice. Method:: The subcutaneous xenograft mode were induced by subcutaneous injection of 2×106 H446 cells into the dorsal skin of BALB/c nude mice. The mice were administered with ssrAAV9-Kal (single-stranded rAAV9) or dsrAAV9-Kal (double-stranded rAAV9)by intraperitoneal injection (I.P.). Tumor microvessel density (MVD) was examined by anti-CD34 stain-ing to evaluate tumor angiogenesis. Results:: Compared with the PBS (blank control) group, tumor growth in the high-dose ssrAAV9-Kal group was inhibited by 40% by day 49, and the MVD of tumor tissues was significantly decreased. Conclusion:: The results indicate that this therapeutic strategy is a promising approach for clinical cancer therapy and impli-cate rAAV9-Kal as a candidate for gene therapy of lung cancer.


2018 ◽  
Vol 92 (9) ◽  
Author(s):  
Diane Carnathan ◽  
Benton Lawson ◽  
Joana Yu ◽  
Kalpana Patel ◽  
James M. Billingsley ◽  
...  

ABSTRACT Pathogenic human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection of humans and rhesus macaques (RMs) induces persistently high production of type I interferon (IFN-I), which is thought to contribute to disease progression. To elucidate the specific role of interferon alpha (IFN-α) in SIV pathogenesis, 12 RMs were treated prior to intravenous (i.v.) SIV mac239 infection with a high or a low dose of an antibody (AGS-009) that neutralizes most IFN-α subtypes and were compared with six mock-infused, SIV-infected controls. Plasma viremia was measured postinfection to assess the effect of IFN-α blockade on virus replication, and peripheral blood and lymphoid tissue samples were analyzed by immunophenotypic staining. Consistent with the known antiviral effect of IFN-I, high-dose AGS-009 treatment induced a modest increase in acute-phase viral loads versus controls. Four out of 6 RMs receiving a high dose of AGS-009 also experienced an early decline in CD4 + T cell counts that was associated with progression to AIDS. Interestingly, 50% of the animals treated with AGS-009 (6/12) developed AIDS within 1 year of infection compared with 17% (1/6) of untreated controls. Finally, blockade of IFN-α decreased the levels of activated CD4 + and CD8 + T cells, as well as B cells, as measured by PD-1 and/or Ki67 expression. The lower levels of activated lymphocytes in IFN-α-blockaded animals supports the hypothesis that IFN-α signaling contributes to lymphocyte activation during SIV infection and suggests that this signaling pathway is involved in controlling virus replication during acute infection. The potential anti-inflammatory effect of IFN-α blockade should be explored as a strategy to reduce immune activation in HIV-infected individuals. IMPORTANCE Interferon alpha (IFN-α) is a member of a family of molecules (type I interferons) that prevent or limit virus infections in mammals. However, IFN-α production may contribute to the chronic immune activation that is thought to be the primary cause of immune decline and AIDS in HIV-infected patients. The study presented here attempts to understand the contribution of IFN-α to the natural history and progression of SIV infection of rhesus macaques, the primary nonhuman primate model system for testing hypotheses about HIV infection in humans. Here, we show that blockade of IFN-α action promotes lower chronic immune activation but higher early viral loads, with a trend toward faster disease progression. This study has significant implications for new treatments designed to impact the type I interferon system.


Science ◽  
2017 ◽  
Vol 358 (6359) ◽  
pp. 85-90 ◽  
Author(s):  
Ling Xu ◽  
Amarendra Pegu ◽  
Ercole Rao ◽  
Nicole Doria-Rose ◽  
Jochen Beninga ◽  
...  

The development of an effective AIDS vaccine has been challenging because of viral genetic diversity and the difficulty of generating broadly neutralizing antibodies (bnAbs). We engineered trispecific antibodies (Abs) that allow a single molecule to interact with three independent HIV-1 envelope determinants: the CD4 binding site, the membrane-proximal external region (MPER), and the V1V2 glycan site. Trispecific Abs exhibited higher potency and breadth than any previously described single bnAb, showed pharmacokinetics similar to those of human bnAbs, and conferred complete immunity against a mixture of simian-human immunodeficiency viruses (SHIVs) in nonhuman primates, in contrast to single bnAbs. Trispecific Abs thus constitute a platform to engage multiple therapeutic targets through a single protein, and they may be applicable for treatment of diverse diseases, including infections, cancer, and autoimmunity.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Peng Xiao ◽  
Sanjeev Gumber ◽  
Mark A. Marzinke ◽  
Abhijit A. Date ◽  
Thuy Hoang ◽  
...  

ABSTRACT Oral preexposure prophylaxis (PrEP) has been approved for prophylaxis of HIV-1 transmission but is associated with high costs and issues of adherence. Protection from anal transmission of HIV using topical microbicides and methods congruent with sexual behavior offers the promise of improved adherence. We compared the pharmacokinetics (PK) and ex vivo efficacy of iso-osmolar (IOsm) and hypo-osmolar (HOsm) rectal enema formulations of tenofovir (TFV) in rhesus macaques. Single-dose PK of IOsm or HOsm high-dose (5.28 mg/ml) and low-dose (1.76 mg/ml) formulations of TFV enemas were evaluated for systemic uptake in blood, colorectal biopsy specimens, and rectal CD4+ T cells. Markedly higher TFV concentrations were observed in plasma and tissues after administration of the HOsm high-dose formulation than with all other formulations tested. TFV and TFV diphosphate (TFV-DP) concentrations in tissue correlated for the HOsm high-dose formulation, demonstrating rapid uptake and transformation of TFV to TFV-DP in tissues. TFV-DP amounts in tissues collected at 1 and 24 h were 7 times and 5 times higher, respectively (P < 0.01), than the ones collected in tissues with the IOsm formulation. The HOsm high-dose formulation prevented infection in ex vivo challenges of rectal tissues collected at 1, 24, and 72 h after the intrarectal dosing, whereas the same TFV dose formulated as an IOsm enema was less effective.


mBio ◽  
2022 ◽  
Author(s):  
Geraldine Vilmen ◽  
Anna C. Smith ◽  
Hector Cervera Benet ◽  
Rajni Kant Shukla ◽  
Ross C. Larue ◽  
...  

Rhesus macaques are a critical animal model for preclinical testing of HIV-1 vaccine and prevention approaches. However, HIV-1 does not replicate in rhesus macaques, and thus, chimeric simian-human immunodeficiency viruses (SHIVs), which encode HIV-1 envelope glycoproteins (Envs), are used as surrogate challenge viruses to infect rhesus macaques for modeling HIV-1 infection.


2016 ◽  
Vol 113 (24) ◽  
pp. E3413-E3422 ◽  
Author(s):  
Hui Li ◽  
Shuyi Wang ◽  
Rui Kong ◽  
Wenge Ding ◽  
Fang-Hua Lee ◽  
...  

Most simian–human immunodeficiency viruses (SHIVs) bearing envelope (Env) glycoproteins from primary HIV-1 strains fail to infect rhesus macaques (RMs). We hypothesized that inefficient Env binding to rhesus CD4 (rhCD4) limits virus entry and replication and could be enhanced by substituting naturally occurring simian immunodeficiency virus Env residues at position 375, which resides at a critical location in the CD4-binding pocket and is under strong positive evolutionary pressure across the broad spectrum of primate lentiviruses. SHIVs containing primary or transmitted/founder HIV-1 subtype A, B, C, or D Envs with genotypic variants at residue 375 were constructed and analyzed in vitro and in vivo. Bulky hydrophobic or basic amino acids substituted for serine-375 enhanced Env affinity for rhCD4, virus entry into cells bearing rhCD4, and virus replication in primary rhCD4 T cells without appreciably affecting antigenicity or antibody-mediated neutralization sensitivity. Twenty-four RMs inoculated with subtype A, B, C, or D SHIVs all became productively infected with different Env375 variants—S, M, Y, H, W, or F—that were differentially selected in different Env backbones. Notably, SHIVs replicated persistently at titers comparable to HIV-1 in humans and elicited autologous neutralizing antibody responses typical of HIV-1. Seven animals succumbed to AIDS. These findings identify Env–rhCD4 binding as a critical determinant for productive SHIV infection in RMs and validate a novel and generalizable strategy for constructing SHIVs with Env glycoproteins of interest, including those that in humans elicit broadly neutralizing antibodies or bind particular Ig germ-line B-cell receptors.


2002 ◽  
Vol 76 (4) ◽  
pp. 1731-1743 ◽  
Author(s):  
A. A. Ansari ◽  
A. E. Mayne ◽  
J. B. Sundstrom ◽  
P. Bostik ◽  
B. Grimm ◽  
...  

ABSTRACT The ability of recombinant rhesus interleukin-12 (rMamu-IL-12) administration during acute simian immunodeficiency virus SIVmac251 infection to influence the quality of the antiviral immune responses was assessed in rhesus macaques. Group I (n = 4) was the virus-only control group. Group II and III received a conditioning regimen of rMamu-IL-12 (10 and 20 μg/kg, respectively, subcutaneously [s.c.]) on days −2 and 0. Thereafter, group II received 2 μg of IL-12 per kg and group III received 10 μg/kg s.c. twice a week for 8 weeks. On day 0 all animals were infected with SIVmac251 intravenously. While all four group I animals and three of four group II animals died by 8 and 10 months post infection (p.i.), all four group III animals remained alive for >20 months p.i. The higher IL-12 dose led to lower plasma viral loads and markedly lower peripheral blood mononuclear cell and lymph node proviral DNA loads. During the acute viremia phase, the high-IL-12-dose monkeys showed an increase in CD3− CD8α/α+ and CD3+ CD8 α/α+ cells and, unlike the control and low-IL-12-dose animals, did not demonstrate an increase in CD4+ CD45RA+ CD62L+ naive cells. The high-IL-12-dose animals also demonstrated that both CD8α/α+ and CD8α/β+ cells produced antiviral factors early p.i., whereas only CD8α/β+ cells retained this function late p.i. Long-term survival correlated with sustained high levels of SIV gag/pol and SIV env cytotoxic T lymphocytes and retention of high memory responses against nominal antigens. This is the first study to demonstrate the capacity of IL-12 to significantly protect macaques from SIV-induced disease, and it provides a useful model to more precisely identify correlates of virus-specific disease-protective responses.


Sign in / Sign up

Export Citation Format

Share Document