scholarly journals Paired box 6 programs essential exocytotic genes in the regulation of glucose-stimulated insulin secretion and glucose homeostasis

2021 ◽  
Vol 13 (600) ◽  
pp. eabb1038
Author(s):  
Wing Yan So ◽  
Wai Nam Liu ◽  
Adrian Kee Keong Teo ◽  
Guy A. Rutter ◽  
Weiping Han

The paired box 6 (PAX6) transcription factor is crucial for normal pancreatic islet development and function. Heterozygous mutations of PAX6 are associated with impaired insulin secretion and early-onset diabetes mellitus in humans. However, the molecular mechanism of PAX6 in controlling insulin secretion in human beta cells and its pathophysiological role in type 2 diabetes (T2D) remain ambiguous. We investigated the molecular pathway of PAX6 in the regulation of insulin secretion and the potential therapeutic value of PAX6 in T2D by using human pancreatic beta cell line EndoC-βH1, the db/db mouse model, and primary human pancreatic islets. Through loss- and gain-of-function approaches, we uncovered a mechanism by which PAX6 modulates glucose-stimulated insulin secretion (GSIS) through a cAMP response element–binding protein (CREB)/Munc18-1/2 pathway. Moreover, under diabetic conditions, beta cells and pancreatic islets displayed dampened PAX6/CREB/Munc18-1/2 pathway activity and impaired GSIS, which were reversed by PAX6 replenishment. Adeno-associated virus–mediated PAX6 overexpression in db/db mouse pancreatic beta cells led to a sustained amelioration of glycemic perturbation in vivo but did not affect insulin resistance. Our study highlights the pathophysiological role of PAX6 in T2D-associated beta cell dysfunction in humans and suggests the potential of PAX6 gene transfer in preserving and restoring beta cell function.

2000 ◽  
Vol 164 (3) ◽  
pp. 307-314 ◽  
Author(s):  
K Iizuka ◽  
H Nakajima ◽  
A Ono ◽  
K Okita ◽  
J Miyazaki ◽  
...  

Glucose-6-phosphatase (G-6-Pase) hydrolyzes glucose-6-phosphate to glucose, reciprocal with the so-called glucose sensor, glucokinase, in pancreatic beta cells. To study the role of G-6-Pase in glucose-stimulated insulin secretion from beta cells, we have introduced rat G-6-Pase catalytic subunit cDNA and have established permanent clones with 3-, 7- and 24-fold G-6-Pase activity of the mouse beta-cell line, MIN6. In these clones, glucose usage and ATP production in the presence of 5.5 or 25 mM glucose were reduced, and glucose-stimulated insulin secretion was decreased in proportion to the increased G-6-Pase activity. In addition, insulin secretory capacity in response to d-fructose and pyruvate was unchanged; however, 25 mM glucose-stimulated insulin secretion and intracellular calcium response were completely inhibited. In the clone with 24-fold G-6-Pase activity, changes in intracellular NAD(P)H autofluorescence in response to 25 mM glucose were reduced, but the changes with 20 mM fructose and 20 mM pyruvate were not altered. Stable overexpression of G-6-Pase in beta cells resulted in attenuation of the overall glucose-stimulated metabolic responses corresponding to the degree of overexpression. This particular experimental manipulation shows that the possibility exists of modulating glucose-stimulated insulin release by thoroughly altering glucose cycling at the glucokinase/G-6-Pase step.


2018 ◽  
Vol 52 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Eiji Yamato

Abstract Objective. Histone deacytylase inhibitors (HDACis) inhibit the deacetylation of the lysine residue of proteins, including histones, and regulate the transcription of a variety of genes. Recently, HDACis have been used clinically as anti-cancer drugs and possible anti-diabetic drugs. Even though HDACis have been proven to protect the cytokine-induced damage of pancreatic beta cells, evidence also shows that high doses of HDACis are cytotoxic. In the present study, we, therefore, investigated the eff ect of HDACis on insulin secretion in a pancreatic beta cell line. Methods. Pancreatic beta cells MIN6 were treated with selected HDACis (trichostatin A, TSA; valproic acid, VPA; and sodium butyrate, NaB) in medium supplemented with 25 mM glucose and 13% heat-inactivated fetal bovine serum (FBS) for indicated time intervals. Protein expression of Pdx1 and Mafa in MIN6 cells was demonstrated by immunohistochemistry and immunocytochemistry, expression of Pdx1 and Mafa genes was measured by quantitative RT-PCR method. Insulin release from MIN6 cells and insulin cell content were estimated by ELISA kit. Superoxide production in MIN6 cells was measured using a Total ROS/Superoxide Detection System. Results. TSA, VPA, and NaB inhibited the expression of Pdx1 and Mafa genes and their products. TSA treatment led to beta cell malfunction, characterized by enhanced insulin secretion at 3 and 9 mM glucose, but impaired insulin secretion at 15 and 25 mM glucose. Th us, TSA induced dysregulation of the insulin secretion mechanism. TSA also enhanced reactive oxygen species production in pancreatic beta cells. Conclusions. Our results showed that HDACis caused failure to suppress insulin secretion at low glucose concentrations and enhance insulin secretion at high glucose concentrations. In other words, when these HDACis are used clinically, high doses of HDACis may cause hypoglycemia in the fasting state and hyperglycemia in the fed state. When using HDACis, physicians should, therefore, be aware of the capacity of these drugs to modulate the insulin secretory capacity of pancreatic beta cells.


2021 ◽  
Author(s):  
kevin Saitoski ◽  
Maria Ryaboshapkina ◽  
Ghaith Hamza ◽  
Andrew F Jarnuczak ◽  
claire berthault ◽  
...  

Aims/hypothesis: Proprotein convertase subtilisin/kexin 9 (PCSK9) is involved in the degradation of LDLR. However, PCSK9 can target other proteins in a cell-type specific manner. While PCSK9 has been detected in pancreatic islets, its expression in insulin-producing pancreatic beta cells is debated. Herein, we studied PCSK9 expression, regulation and function in the human pancreatic beta cell line EndoC-βH1. Methods: We assessed PCSK9 expression in mouse and human pancreatic islets, and in the pancreatic beta cell line EndoC-βH1. We also studied PCSK9 regulation by cholesterol, lipoproteins, Mevastatin, and by SREBPs transcription factors. To evaluate PCSK9 function in pancreatic beta cells, we performed PCSK9 gain-and loss-of-function experiments in EndoC-βH1 using siPCSK9 or recombinant PCSK9 treatments, respectively. Results: We demonstrate that PCSK9 is expressed and secreted by pancreatic beta cells. In EndoC-βH1 cells, PCSK9 expression is regulated by cholesterol and by SREBPs transcription factors. Importantly, PCSK9 knockdown results in multiple transcriptome, proteome and secretome deregulations and impaired insulin secretion. By gain- and loss-of- function experiments, we observed that PCSK9 regulates the expression levels of LDLR and VLDLR through an extracellular mechanism while CD36, PD-L1 and HLA-ABC are regulated through an intracellular mechanism. Conclusions/interpretation: Collectively, these results highlight PCSK9 as an important regulator of CD36, PD-L1 and HLA-ABC cell surface expression in pancreatic beta cells. Data availability: RNA-seq data have been deposited to GEO database with accession number GSE182016. Mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the following identifiers: PXD027921, PXD027911 and PXD027913.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0241349
Author(s):  
Sajid Ali Rajput ◽  
Munazza Raza Mirza ◽  
M. Iqbal Choudhary

Beta cell apoptosis induced by proinflammatory cytokines is one of the hallmarks of diabetes. Small molecules which can inhibit the cytokine-induced apoptosis could lead to new drug candidates that can be used in combination with existing therapeutic interventions against diabetes. The current study evaluated several effects of bergenin, an isocoumarin derivative, in beta cells in the presence of cytokines. These included (i) increase in beta cell viability (by measuring cellular ATP levels) (ii) suppression of beta cell apoptosis (by measuring caspase activity), (iii) improvement in beta cell function (by measuring glucose-stimulated insulin secretion), and (iv) improvement of beta cells mitochondrial physiological functions. The experiments were carried out using rat beta INS-1E cell line in the presence or absence of bergenin and a cocktail of proinflammatory cytokines (interleukin-1beta, tumor necrosis factor-alpha, and interferon- gamma) for 48 hr. Bergenin significantly inhibited beta cell apoptosis, as inferred from the reduction in the caspase-3 activity (IC50 = 7.29 ± 2.45 μM), and concurrently increased cellular ATP Levels (EC50 = 1.97 ± 0.47 μM). Bergenin also significantly enhanced insulin secretion (EC50 = 6.73 ± 2.15 μM) in INS-1E cells, presumably because of the decreased nitric oxide production (IC50 = 6.82 ± 2.83 μM). Bergenin restored mitochondrial membrane potential (EC50 = 2.27 ± 0.83 μM), decreased ROS production (IC50 = 14.63 ± 3.18 μM), and improved mitochondrial dehydrogenase activity (EC50 = 1.39 ± 0.62 μM). This study shows for the first time that bergenin protected beta cells from cytokine-induced apoptosis and restored insulin secretory function by virtue of its anti-inflammatory, antioxidant and anti-apoptotic properties. To sum up, the above mentioned data highlight bergenin as a promising anti-apoptotic agent in the context of diabetes.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Alessandra Puddu ◽  
Roberta Sanguineti ◽  
François Mach ◽  
Franco Dallegri ◽  
Giorgio Luciano Viviani ◽  
...  

The primary function of pancreatic beta-cells is to produce and release insulin in response to increment in extracellular glucose concentrations, thus maintaining glucose homeostasis. Deficient beta-cell function can have profound metabolic consequences, leading to the development of hyperglycemia and, ultimately, diabetes mellitus. Therefore, strategies targeting the maintenance of the normal function and protecting pancreatic beta-cells from injury or death might be crucial in the treatment of diabetes. This narrative review will update evidence from the recently identified molecular regulators preserving beta-cell mass and function recovery in order to suggest potential therapeutic targets against diabetes. This review will also highlight the relevance for novel molecular pathways potentially improving beta-cell dysfunction.


1989 ◽  
Vol 257 (6) ◽  
pp. C1171-C1176 ◽  
Author(s):  
H. H. Keahey ◽  
A. E. Boyd ◽  
D. L. Kunze

The mechanisms by which norepinephrine and epinephrine activate alpha 2-adrenergic receptors and inhibit insulin release from the pancreatic beta-cell (19, 21, 23) are not yet clear but may involve modulation at several sites. Because intracellular calcium has been implicated in the secretory process, it has been suggested that catecholamines may inhibit secretion by blocking calcium influx, thus reducing the free cytosolic calcium concentration (23). The present study examines the effects of epinephrine, norepinephrine, and clonidine on calcium current in an SV40-transformed hamster beta-cell line (HIT cells). Under voltage-clamp conditions, calcium currents were reversibly inhibited by norepinephrine, epinephrine, and clonidine in the low nanomolar range. The effects were blocked by 1) the alpha 2-antagonist yohimbine, 2) preincubation of the cells with pertussis toxin (PTX), and 3) guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), the nonhydrolyzable GDP analogue that competitively inhibits the interaction of GTP with G proteins. In contrast, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) caused irreversible blockade by catecholamines. These effects could not be overcome by adenosine 3',5'-cyclic monophosphate (cAMP), suggesting that the adenylate cyclase pathway is not involved in the G protein coupling with the channels. These studies show that catecholamines inhibit calcium currents in beta-cells through an alpha 2-adrenoreceptor PTX-sensitive G protein pathway and could inhibit insulin secretion by this mechanism.


1996 ◽  
Vol 271 (42) ◽  
pp. 26194-26199 ◽  
Author(s):  
Aki Soejima ◽  
Kimiko Inoue ◽  
Daisaku Takai ◽  
Motohisa Kaneko ◽  
Hisamitsu Ishihara ◽  
...  

Diabetologia ◽  
1993 ◽  
Vol 36 (11) ◽  
pp. 1139-1145 ◽  
Author(s):  
H. Ishihara ◽  
T. Asano ◽  
K. Tsukuda ◽  
H. Katagiri ◽  
K. Inukai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document