Engineering sperm-binding IgG antibodies for the development of an effective nonhormonal female contraception

2021 ◽  
Vol 13 (606) ◽  
pp. eabd5219
Author(s):  
Bhawana Shrestha ◽  
Alison Schaefer ◽  
Yong Zhu ◽  
Jamal Saada ◽  
Timothy M. Jacobs ◽  
...  

Many women risk unintended pregnancy because of medical contraindications or dissatisfaction with contraceptive methods, including real and perceived side effects associated with the use of exogenous hormones. We pursued direct vaginal delivery of sperm-binding monoclonal antibodies (mAbs) that can limit progressive sperm motility in the female reproductive tract as a strategy for effective nonhormonal contraception. Here, motivated by the greater agglutination potencies of polyvalent immunoglobulins but the bioprocessing ease and stability of immunoglobulin G (IgG), we engineered a panel of sperm-binding IgGs with 6 to 10 antigen-binding fragments (Fabs), isolated from a healthy immune-infertile woman against a unique surface antigen universally present on human sperm. These highly multivalent IgGs (HM-IgGs) were at least 10- to 16-fold more potent and faster at agglutinating sperm than the parent IgG while preserving the crystallizable fragment (Fc) of IgG that mediates trapping of individual spermatozoa in mucus. The increased potencies translated into effective (>99.9%) reduction of progressively motile sperm in the sheep vagina using as little as 33 μg of the 10-Fab HM-IgG. HM-IgGs were produced at comparable yields and had identical thermal stability to the parent IgG, with greater homogeneity. HM-IgGs represent not only promising biologics for nonhormonal contraception but also a promising platform for engineering potent multivalent mAbs for other biomedical applications.

2020 ◽  
Author(s):  
Bhawana Shrestha ◽  
Alison Schaefer ◽  
Jamal Saada ◽  
Zhu Yong ◽  
Timothy M. Jacobs ◽  
...  

AbstractMany women risk unintended pregnancy due to dissatisfaction with available hormonal contraceptive methods. This led us to pursue topical sperm-binding monoclonal antibodies as a strategy for safe, non-hormonal contraception. Motivated by the greater agglutination potencies of polymeric immunoglobulins such as IgM and the exceptional bioprocessing ease in manufacturing IgG, we engineered IgGs possessing 6-10 Fabs against a unique surface antigen universally present on human sperm. These highly multivalent IgGs (HM-IgGs) are at least 10- to 16-fold more potent and faster than the parent IgG at agglutinating sperm, while preserving Fc-mediated trapping of individual spermatozoa in mucus. The increased potencies translate to effective (>99.9%) reduction of progressively motile sperm in the sheep vagina using 33 micrograms of the 10 Fab HM-IgG. HM-IgGs produce at comparable yields and possess identical thermal stability to the parent IgG, with greater homogeneity. HM-IgGs represent not only promising biologics for non-hormonal contraception but also a promising platform for generating potent agglutinating mAb for diverse medical applications.


2010 ◽  
Vol 22 (9) ◽  
pp. 37 ◽  
Author(s):  
K. A. Redgrove ◽  
B. Nixon ◽  
E. A. McLaughlin ◽  
M. K. O'Bryan ◽  
R. J. Aitken

A unique characteristic of mammalian spermatozoa is that upon ejaculation, they are unable to recognise and bind to an ovulated oocyte. These functional attributes are only realised following the sperms ascent of the female reproductive tract whereupon they undergo a myriad of biochemical and biophysical changes collectively referred to as ‘capacitation’. Since spermatozoa are both transcriptionally and translationally quiescent cells, this functional transformation must be engineered by a combination of post-translational modification and spatial reorganisation of existing sperm proteins. Indeed, evidence from our laboratory suggests that a key attribute of capacitation is the remodeling of the sperm surface architecture leading to the assembly and / or presentation of multimeric sperm-oocyte receptor complex(es). Through the novel application of Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE), we have secured the first direct evidence that human spermatozoa express a number of these protein complexes on their surface. Furthermore, we have demonstrated that a subset of these complexes harbour putative zona adhesion proteins and display strong affinity for solubilised zona pellucidae. In this study, we have extended our findings through the characterisation of one such complex containing arylsulfatase A (ASA), a protein with recognised affinity for sulfated ligands present within the zona pellucida. Through the application of immunohistochemistry and flow cytometry we revealed that ASA undergoes a capacitation-associated translocation to become expressed on the apical region of the human sperm head, a location compatible with a role in the mediation of sperm-zona pellucida interactions. This dramatic relocation was completely abolished by incubation of capacitating spermatozoa in exogenous cholesterol, suggesting that it may be driven in part by alteration in the membrane fluidity characteristics. Our current research is focused on confirming the role of ASA in human sperm-zona pellucida adhesion and elucidating the precise cellular mechanisms that underpin the proteins translocation to the cell surface.


2020 ◽  
Vol 6 (31) ◽  
pp. eaba5168 ◽  
Author(s):  
Hermes Gadêlha ◽  
Paul Hernández-Herrera ◽  
Fernando Montoya ◽  
Alberto Darszon ◽  
Gabriel Corkidi

Flagellar beating drives sperm through the female reproductive tract and is vital for reproduction. Flagellar waves are generated by thousands of asymmetric molecular components; yet, paradoxically, forward swimming arises via symmetric side-to-side flagellar movement. This led to the preponderance of symmetric flagellar control hypotheses. However, molecular asymmetries must still dictate the flagellum and be manifested in the beat. Here, we reconcile molecular and microscopic observations, reconnecting structure to function, by showing that human sperm uses asymmetric and anisotropic controls to swim. High-speed three-dimensional (3D) microscopy revealed two coactive transversal controls: An asymmetric traveling wave creates a one-sided stroke, and a pulsating standing wave rotates the sperm to move equally on all sides. Symmetry is thus achieved through asymmetry, creating the optical illusion of bilateral symmetry in 2D microscopy. This shows that the sperm flagellum is asymmetrically controlled and anisotropically regularized by fast-signal transduction. This enables the sperm to swim forward.


Development ◽  
2008 ◽  
Vol 135 (22) ◽  
pp. 3677-3686 ◽  
Author(s):  
G. Machado-Oliveira ◽  
L. Lefievre ◽  
C. Ford ◽  
M. B. Herrero ◽  
C. Barratt ◽  
...  

2014 ◽  
Vol 26 (1) ◽  
pp. 188
Author(s):  
R. C. Youngblood ◽  
S. T. Willard ◽  
P. L. Ryan ◽  
J. M. Feugang

Quantum dot technology has enabled researchers to incorporate the intrinsic properties of such nanoparticles into physiological exploration. Previous work from our laboratory has demonstrated that quantum dots can be incorporated into spermatozoa without deleterious effects to physiological parameters such as motility, viability, and fertilizing potential (Feugang et al. 2012). However, the journey of spermatozoa within the female reproductive tract is met with many physicochemical obstacles and checkpoints that include the binding of spermatozoa to utero-oviducal epithelial cells. Moreover, the binding ability/affinity of quantum dot-labelled spermatozoa has not been tested and therefore, the objective of this study is to test the binding semblance of quantum dot-labelled spermatozoa to uterine epithelial cells compared to normal sperm, and the subsequent use of the technology to develop a bioluminescent sperm binding assay. Porcine uterine epithelial (PUE) cells were seeded into 96-well clear-bottomed plates (20 000 cells/well) and allowed to grow to 95% confluency. Motile spermatozoa were selected from fresh pooled semen of fertile boars and labelled with quantum dot nanoparticles to form quantum sperm, as previously described (Feugang et al. 2012). Final concentrations of 107 labelled (QD+) and non-labelled (QD–) spermatozoa were added to monolayers of PUE cells and co-incubated in PBS/polyvinylpyrrolidone (PVP) at 37°C, 5% CO2. The control consisted of PUE cells alone in the PBS/PVP medium. Each treatment was performed in triplicate and experiments were repeated 3 times. After 1 h of co-incubation, the supernatant from each well was transferred to the adjacent three wells. The co-incubated wells containing expected PUE-sperm binding were then washed 3 times with PBS/PVP to eliminate any unbound sperm. PUE-quantum sperm (QD+) and PUE-non-labelled sperm (QD–) complexes were verified using bright field microscopy, followed by measurement of photonic emission from each well (GloMax Multi Detection System, Promega, Madison, WI, USA). Data was analysed by ANOVA with the threshold of significance fixed at P < 0.05. There were no visual differences in binding patterns between QD+ and QD–, which appeared similar under the microscope. However, the photonic signals (relative luminescent units; RLU) from QD+ wells were significantly higher than both the control and QD– wells (2534.84 ± 639.91 v. 542.46 ± 639.91 and 806.48 ± 639.91 RLU; P < 0.05). Supernatants collected from the QD+ wells, representing unbound quantum sperm, had the highest photonic emissions when compared to all other wells, with or without spermatozoa (19 948.23 ± 639.91 RLU; P < 0.05). Results demonstrate that quantum dot nanoparticles can be incorporated into boar spermatozoa without affecting their binding affinity to uterine epithelial cells, and their subsequent use in a biophotonic sperm binding assay. Further optimization and experimentations are ongoing to establish whether bioluminescent quantum sperm could serve to develop sensitive in vitro binding assays to better characterise sperm viability. Support was provided by U.S. Department of Agriculture Agricultural Research Service (USDA-ARS) grant number 58-6402-3-0120


Andrology ◽  
2015 ◽  
Vol 3 (6) ◽  
pp. 1068-1075 ◽  
Author(s):  
C. M. Zumoffen ◽  
E. Massa ◽  
A. M. Caille ◽  
M. J. Munuce ◽  
S. A. Ghersevich

2020 ◽  
Vol 103 (2) ◽  
pp. 411-426
Author(s):  
Prashanth Anamthathmakula ◽  
Wipawee Winuthayanon

Abstract Semen liquefaction is a proteolytic process where a gel-like ejaculated semen becomes watery due to the enzymatic activity of prostate-derived serine proteases in the female reproductive tract. The liquefaction process is crucial for the sperm to gain their motility and successful transport to the fertilization site in Fallopian tubes (or oviducts in animals). Hyperviscous semen or failure in liquefaction is one of the causes of male infertility. Therefore, the biochemical inhibition of serine proteases in the female reproductive tract after ejaculation is a prime target for novel contraceptive development. Herein, we will discuss protein components in the ejaculates responsible for semen liquefaction and any developments of contraceptive methods in the past that involve the liquefaction process.


1984 ◽  
Vol 31 (5) ◽  
pp. 888-894 ◽  
Author(s):  
John E. Gould ◽  
James W. Overstreet ◽  
Fredrick W. Hanson

1997 ◽  
Vol 9 (5) ◽  
pp. 531 ◽  
Author(s):  
James de Jersey ◽  
Lyn A. Hinds ◽  
Mark P. Bradley

The effect of the ovarian hormone, oestradiol-17β, on reproductive tract immunity in the female fox was investigated. Reproductive tract antibody responses were induced by either Peyer’s patch immunization with a recombinant fox sperm protein, or by oral immunization with live, attenuated Salmonella typhimurium. The effect of exogenous oestradiol-17β or the stage of the oestrous cycle on reproductive tract immunity was assessed. The secretion of specific vaginal IgA, but not vaginal IgG, antibodies was reduced by exogenous treatment with oestradiol-17β, while both specific vaginal IgA and vaginal IgG levels declined during the period of natural oestrus. It is concluded that oestradiol-17β, and probably other reproductive hormones, are involved in the regulation of antibody-secretion in the fox reproductive tract, and that reproductive status is an important factor to consider in the design and application of vaccines which aim to induce immunity within the female reproductive tract.


Sign in / Sign up

Export Citation Format

Share Document