Contribution to the study of the lichen genera Cladina and Cladonia in the Russian Arctic, mainly from Taimyr Peninsula and Severnaya Zemlya

Nova Hedwigia ◽  
2005 ◽  
Vol 81 (1-2) ◽  
pp. 79-96 ◽  
Author(s):  
Mikhail Zhurbenko ◽  
Teuvo Ahti
2018 ◽  
Vol 64 (2) ◽  
pp. 170-181 ◽  
Author(s):  
G. N. Antonovskaya ◽  
S. M. Kovalev ◽  
Ya. V. Konechnaya ◽  
V. N. Smirnov ◽  
A. V. Danilov

GFF ◽  
2012 ◽  
Vol 134 (4) ◽  
pp. 331-333
Author(s):  
Olga K. Bogolepova ◽  
Alexander P. Gubanov ◽  
Florentin Paris

1996 ◽  
Vol 42 (142) ◽  
pp. 403-406 ◽  
Author(s):  
Michel Stiévenard ◽  
Vladimir Nikolaëv ◽  
Dmitri Yu Bol’shiyanov ◽  
Christine Fléhoc ◽  
Jean Jouzel ◽  
...  

AbstractThe Vavilov ice cap was perforated in 1988 by a drilling which reached the underlying frozen sediments. In contrast to the overlying glacier ice, the basal ice is composed of different ice layers with a variable debris load. The stable-isotope composition of these layers shows δ values much lower than everywhere else in the core or in the Vavilov ice cap. This is most probably the signature of a remnant of Pleistocene ice which, for the first time, is shown to occur in the Russian Arctic.


2015 ◽  
Vol 9 (4) ◽  
pp. 4407-4436 ◽  
Author(s):  
A. Spolaor ◽  
T. Opel ◽  
J. R. McConnell ◽  
O. J. Maselli ◽  
G. Spreen ◽  
...  

Abstract. The role of sea ice in the Earth climate system is still under debate, although it is known to influence albedo, ocean circulation, and atmosphere-ocean heat and gas exchange. Here we present a reconstruction of AD 1950 to 1998 sea ice in the Laptev Sea based on the Akademii Nauk ice core (Severnaya Zemlya, Russian Arctic). The halogens bromine (Br) and iodine (I) are strongly influenced by sea ice processes. Bromine reacts with the sea ice surface in auto-catalyzing "Bromine explosion" events causing an enrichment of the Br / Na ratio and the bromine excess (Brexc) in snow compared to that in seawater. Iodine is emitted from algal communities growing under sea ice. The results suggest a connection between Brexc and spring sea ice area, as well as a connection between iodine concentration and summer sea ice area. These two halogens are therefore good candidates for extended reconstructions of past sea ice changes in the Arctic.


2021 ◽  
Author(s):  
Vladimir Platonov ◽  
Mikhail Varentsov

<p>Detailed long-term hydrometeorological dataset for Russian Arctic seas was created using hydrodynamic modelling via regional nonhydrostatic atmospheric model COSMO-CLM for 1980 – 2016 period with ~12 km grid. Many test experiments with different model options for summertime and wintertime periods were evaluated to determine the best model configuration. Verification has showed that optimal model setup included usage of ERA-Interim reanalysis as forcing data, new model version 5.05 with a so-called ICON-based physics and spectral nudging technique. Final long-term experiments were simulated on the MSU Supercomputer Complex “Lomonosov-2” become more than 120 Tb data volume excluding many side files.</p><p>Primary evaluation of obtained dataset was done for surface wind and temperature variables. There are some mesoscale details in wind sped climatology reproduced by COSMO-CLM dataset including the Svalbard, Severnaya Zemlya islands, and the western coast of the Novaya Zemlya island. At the same time, high wind speed frequencies based on COSMO-CLM data increased compared to ERA-Interim, especially over Barents Sea, Arctic islands (Novaya Zemlya) and some seacoasts and mainland areas. Regional details are manifested in wind speed increase and marked well for large lakes and orography (Taymyr and Kola peninsulas, Eastern Siberia highlands).</p><p>Comparison of two periods (1980 ­­– 1990 and 2010 – 2016) has shown that spatial distributions of high wind speed frequencies are very similar, but there are some detailed differences. Wind speed frequencies above 20.8 m/s has been decreased in the last decade over the Novaya Zemlya, southwest from Svalbard, middle Siberia inlands; however, it has been increased over Franz Josef Land and Severnaya Zemlya.</p><p>Large-scale temperature climatology patterns have shown a good accordance between ERA-Interim and COSMO-CLM datasets. Significant temperature patterns are detailed relief and lakes manifestations, e.g., over Scandinavian mountains, Eastern Siberian and Taymyr highlands, Novaya Zemlya ranges. The added value in the 1% temperature percentile patterns is more pronounced, especially in the mountainous Eastern Siberia. Regional features are prominent over Onega and Ladoga lakes, and western Kara Sea. There is a remarkable warming over islands and Eastern Siberia valleys, and more clear temperature differentiation between ridges and valleys.</p><p>The nearest prospect of the COSMO-CLM Russian Arctic dataset application is its comparison with other appropriate datasets including reanalyses, satellite data, observations, etc. This will provide important and useful information about opportunities and restrictions of this dataset regarding different variables and specific regions, outline the limits of its applicability and get framework of possible tasks. The other important task is to share this dataset with scientific community.</p>


2021 ◽  
Vol 25 (5) ◽  
pp. 1171-1188
Author(s):  
Alexey N. Morozov ◽  
Natalya V. Vaganova ◽  
Yana V. Konechnaya ◽  
Vladimir E. Asming ◽  
Ludmila G. Dulentsova ◽  
...  

2009 ◽  
Vol 146 (4) ◽  
pp. 497-516 ◽  
Author(s):  
P. MÄNNIK ◽  
O. K. BOGOLEPOVA ◽  
A. PÕLDVERE ◽  
A. P. GUBANOV

AbstractThirty samples from 22 sections collected by the SWEDARCTIC international expedition to Severnaya Zemlya in 1999 contained Ordovician and Silurian conodont faunas. Several taxa, including Apsidognathus cf. milleri, Aulacognathus cf. kuehni, Nudibelodina sensitiva, Ozarkodina broenlundi and Pterospathodus eopennatus, allow precise dating of the strata in this region for the first time. The occurrence of Aphelognathus pyramidalis and Rhipidognathus aff. R. symmetricus in samples from the Strojnaya Formation fits well with the earlier dating of these strata as latest Ordovician. However, Aphelognathus sp. in sample BG-99/14-a, collected from the upper Ushakov Formation, indicates that at least in the lower reaches of the Ushakov River the top of this formation is considerably younger than considered earlier: the sampled strata are Late, not Early Ordovician in age. In the Ordovician and Silurian the present-day Severnaya Zemlya region was dominated by extensive shallow-water, mainly semi-restricted basin environments with habitat specific faunas. The occurrence of Riphidognathus aff. R. symmetricus at some levels in the Upper Ordovician suggests extreme shallowing episodes in the basin. On Severnaya Zemlya, ‘normal-marine’ faunas (including Pt. eopennatus) invaded the distal peripheral regions of the wide shallow-water platform at times of maximum sea-level rise only. The occurrence of Oz. broenlundi and N. sensitiva indicates that in the early Silurian the Severnaya Zemlya basin was quite well connected to the basins over modern North Greenland as well as to the Baltic Palaeobasin. The lower Silurian conodont assemblages in the Vodopad to Samojlovich formations are most similar to those described from the eastern Timan–northern Ural region.


1996 ◽  
Vol 42 (142) ◽  
pp. 403-406 ◽  
Author(s):  
Michel Stiévenard ◽  
Vladimir Nikolaëv ◽  
Dmitri Yu Bol’shiyanov ◽  
Christine Fléhoc ◽  
Jean Jouzel ◽  
...  

AbstractThe Vavilov ice cap was perforated in 1988 by a drilling which reached the underlying frozen sediments. In contrast to the overlying glacier ice, the basal ice is composed of different ice layers with a variable debris load. The stable-isotope composition of these layers shows δ values much lower than everywhere else in the core or in the Vavilov ice cap. This is most probably the signature of a remnant of Pleistocene ice which, for the first time, is shown to occur in the Russian Arctic.


2016 ◽  
Vol 10 (1) ◽  
pp. 245-256 ◽  
Author(s):  
A. Spolaor ◽  
T. Opel ◽  
J. R. McConnell ◽  
O. J. Maselli ◽  
G. Spreen ◽  
...  

Abstract. The role of sea ice in the Earth climate system is still under debate, although it is known to influence albedo, ocean circulation, and atmosphere–ocean heat and gas exchange. Here we present a reconstruction of 1950 to 1998 AD sea ice in the Laptev Sea based on the Akademii Nauk ice core (Severnaya Zemlya, Russian Arctic). The chemistry of halogens bromine (Br) and iodine (I) is strongly active and influenced by sea ice dynamics, in terms of physical, chemical and biological process. Bromine reacts on the sea ice surface in autocatalyzing "bromine explosion" events, causing an enrichment of the Br / Na ratio and hence a bromine excess (Brexc) in snow compared to that in seawater. Iodine is suggested to be emitted from algal communities growing under sea ice. The results suggest a connection between Brexc and spring sea ice area, as well as a connection between iodine concentration and summer sea ice area. The correlation coefficients obtained between Brexc and spring sea ice (r  =  0.44) as well as between iodine and summer sea ice (r  =  0.50) for the Laptev Sea suggest that these two halogens could become good candidates for extended reconstructions of past sea ice changes in the Arctic.


Sign in / Sign up

Export Citation Format

Share Document