Validation of downward surface radiation derived from MSG data by in-situ observations over the Atlantic ocean

2010 ◽  
Vol 19 (2) ◽  
pp. 155-167 ◽  
Author(s):  
Andreas Macke ◽  
John Kalisch ◽  
Rainer Hollmann
2020 ◽  
Author(s):  
Christian Lanconelli ◽  
Fabrizio Cappucci ◽  
Bernardo Mota ◽  
Nadine Gobron ◽  
Amelie Driemel ◽  
...  

<div> <p>Nowadays, an increasingly amount of remote sensing and in-situ data are extending over decades. They contribute to increase the relevance of long-term studies aimed to deduce the mechanisms underlying the climate change dynamics. The aim of this study is to investigate the coherence between trends of different long-term climate related variables including the surface albedo (A) and land surface temperature (LST) as obtained by remote sensing platforms, models and in-situ observations. </p> </div><div> <p>Directional-hemispherical and bi-hemispherical broadband surface reflectances as derived from MODIS-MCD43 (v006) and MISR, and the analogous products of the Copernicus Global Land (CGLS) and C3S services derived from SPOT-VEGETATION, PROBA-V and AVHRR (v0 and v1), have been harmonized and, together with the ECMWF ERA-5 model, assessed with respect ground data taken over polar areas, over a temporal window spanning the last 20 years.  </p> </div><div> <p>The benchmark was established using in-situ measurements provided from the Baseline Surface Radiation Network (BSRN) over four Arctic and four Antarctic sites. The 1-minute resolution datasets of broadband upwelling and down-welling radiation, have been reduced to directional- and bi-hemispherical reflectances, with the same time scale of satellite products (1-day, 10-days, monthly).  </p> </div><div> <p>A similar approach was used to investigate the fitness for purpose of Land Surface Temperature as derived by MODIS (MOD11), ECMWF ERA-5, with respect to the brightness temperature derived using BSRN measurements over the longwave band.  </p> </div><div> <p>The entire temporal series are decomposed into seasonal and residual components, and then the presence of monotonic significant trends are assessed using the non-parametric Kendall test. Preliminary results shown a strong correlation between negative albedo trends and positive LST trends, especially in arctic regions. </p> </div>


<em>Abstract.</em>—Recent observations from trawling and submersibles have shown several species of cephalopods to be common in slope-waters of the western North Atlantic Ocean. The slope-water cephalopods include the commercially-important genus <em> Illex</em>, taxonomy of which remains troubling in the area off Charleston because of the possibility that <em> I. oxygonius </em>is a hybrid. Other common species include another ommastrephid <em> Ornithoteuthis antillarum</em>, single species of <em> Mastigoteuthis</em>, <em> Brachioteuthis</em>, and <em> Pholidoteuthis</em>, several cranchiids, histioteuthids, and sepiolids, two octopodids, the pelagic incirrate octopod <em> Haliphron atlanticus</em>, and the cirrate octopod <em> Stauroteuthis syrtensis</em>. Behavior and distribution of these species contrast with those of truly open-ocean cephalopods, which also are present in slope waters. In-situ observations have shown that several of the squids are more strongly associated with the bottom than was previously supposed and that many of the slope-water cephalopods exhibit unexpected behaviors.


2015 ◽  
Vol 16 (2) ◽  
pp. 917-931 ◽  
Author(s):  
Jifu Yin ◽  
Xiwu Zhan ◽  
Youfei Zheng ◽  
Jicheng Liu ◽  
Li Fang ◽  
...  

Abstract Many studies that have assimilated remotely sensed soil moisture into land surface models have generally focused on retrievals from a single satellite sensor. However, few studies have evaluated the merits of assimilating ensemble products that are merged soil moisture retrievals from several different sensors. In this study, the assimilation of the Soil Moisture Operational Products System (SMOPS) blended soil moisture (SBSM) product, which is a combination of soil moisture products from WindSat, Advanced Scatterometer (ASCAT), and Soil Moisture and Ocean Salinity (SMOS) satellite sensors is examined. Using the ensemble Kalman filter (EnKF), a synthetic experiment is performed on the global domain at 25-km resolution to assess the impact of assimilating the SBSM product. The benefit of assimilating SBSM is assessed by comparing it with in situ observations from U.S. Department of Agriculture Soil Climate Analysis Network (SCAN) and the Surface Radiation Budget Network (SURFRAD). Time-averaged surface-layer soil moisture fields from SBSM have a higher spatial coverage and generally agree with model simulations in the global patterns of wet and dry regions. The impacts of assimilating SMOPS blended data on model soil moisture and soil temperature are evident in both sparsely and densely vegetated areas. Temporal correlations between in situ observations and net shortwave radiation and net longwave radiation are higher with assimilating SMOPS blended product than without the data assimilation.


Zootaxa ◽  
2018 ◽  
Vol 4526 (2) ◽  
pp. 232 ◽  
Author(s):  
HENK-JAN HOVING ◽  
PHILIPP NEITZEL ◽  
BRUCE ROBISON

We report on the first records of Kiyohimea usagi Matsumoto & Robison 1992 (Ctenophora; Eurhamphaeidae) in the Atlantic Ocean. This large, fragile ctenophore cannot be captured by nets, and can only be studied in its natural habitat, the pelagic ocean. In the eastern Atlantic, in the Cape Verde region, in situ observations were obtained using the manned submersible JAGO and a towed pelagic observation system. Between 2015 and 2018 we documented 10 individuals which were encountered between 47–590 m depth. A description of the gastrovascular canal system is provided and potential feeding behavior is discussed. Our study confirms how in situ observations in the poorly explored pelagic realm will lead to the discovery of relatively large and previously undocumented fauna. 


2004 ◽  
Vol 27 (1-2) ◽  
pp. 15-30 ◽  
Author(s):  
S. ARNAULT ◽  
N. CHOUAIB ◽  
D. DIVERRÈS ◽  
S. JACQUIN ◽  
O. COZE

Author(s):  
T. Marieb ◽  
J. C. Bravman ◽  
P. Flinn ◽  
D. Gardner ◽  
M. Madden

Electromigration and stress voiding have been active areas of research in the microelectronics industry for many years. While accelerated testing of these phenomena has been performed for the last 25 years[1-2], only recently has the introduction of high voltage scanning electron microscopy (HVSEM) made possible in situ testing of realistic, passivated, full thickness samples at high resolution.With a combination of in situ HVSEM and post-testing transmission electron microscopy (TEM) , electromigration void nucleation sites in both normal polycrystalline and near-bamboo pure Al were investigated. The effect of the microstructure of the lines on the void motion was also studied.The HVSEM used was a slightly modified JEOL 1200 EX II scanning TEM with a backscatter electron detector placed above the sample[3]. To observe electromigration in situ the sample was heated and the line had current supplied to it to accelerate the voiding process. After testing lines were prepared for TEM by employing the plan-view wedge technique [6].


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Sze Hoon Gan ◽  
Zarinah Waheed ◽  
Fung Chen Chung ◽  
Davies Austin Spiji ◽  
Leony Sikim ◽  
...  

2021 ◽  
Vol 13 (7) ◽  
pp. 1250
Author(s):  
Yanxing Hu ◽  
Tao Che ◽  
Liyun Dai ◽  
Lin Xiao

In this study, a machine learning algorithm was introduced to fuse gridded snow depth datasets. The input variables of the machine learning method included geolocation (latitude and longitude), topographic data (elevation), gridded snow depth datasets and in situ observations. A total of 29,565 in situ observations were used to train and optimize the machine learning algorithm. A total of five gridded snow depth datasets—Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) snow depth, Global Snow Monitoring for Climate Research (GlobSnow) snow depth, Long time series of daily snow depth over the Northern Hemisphere (NHSD) snow depth, ERA-Interim snow depth and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) snow depth—were used as input variables. The first three snow depth datasets are retrieved from passive microwave brightness temperature or assimilation with in situ observations, while the last two are snow depth datasets obtained from meteorological reanalysis data with a land surface model and data assimilation system. Then, three machine learning methods, i.e., Artificial Neural Networks (ANN), Support Vector Regression (SVR), and Random Forest Regression (RFR), were used to produce a fused snow depth dataset from 2002 to 2004. The RFR model performed best and was thus used to produce a new snow depth product from the fusion of the five snow depth datasets and auxiliary data over the Northern Hemisphere from 2002 to 2011. The fused snow-depth product was verified at five well-known snow observation sites. The R2 of Sodankylä, Old Aspen, and Reynolds Mountains East were 0.88, 0.69, and 0.63, respectively. At the Swamp Angel Study Plot and Weissfluhjoch observation sites, which have an average snow depth exceeding 200 cm, the fused snow depth did not perform well. The spatial patterns of the average snow depth were analyzed seasonally, and the average snow depths of autumn, winter, and spring were 5.7, 25.8, and 21.5 cm, respectively. In the future, random forest regression will be used to produce a long time series of a fused snow depth dataset over the Northern Hemisphere or other specific regions.


2018 ◽  
Vol 2 (9) ◽  
Author(s):  
Ken-ichiro Murata ◽  
Ken Nagashima ◽  
Gen Sazaki

Polar Biology ◽  
2021 ◽  
Author(s):  
Philipp Neitzel ◽  
Aino Hosia ◽  
Uwe Piatkowski ◽  
Henk-Jan Hoving

AbstractObservations of the diversity, distribution and abundance of pelagic fauna are absent for many ocean regions in the Atlantic, but baseline data are required to detect changes in communities as a result of climate change. Gelatinous fauna are increasingly recognized as vital players in oceanic food webs, but sampling these delicate organisms in nets is challenging. Underwater (in situ) observations have provided unprecedented insights into mesopelagic communities in particular for abundance and distribution of gelatinous fauna. In September 2018, we performed horizontal video transects (50–1200 m) using the pelagic in situ observation system during a research cruise in the southern Norwegian Sea. Annotation of the video recordings resulted in 12 abundant and 7 rare taxa. Chaetognaths, the trachymedusaAglantha digitaleand appendicularians were the three most abundant taxa. The high numbers of fishes and crustaceans in the upper 100 m was likely the result of vertical migration. Gelatinous zooplankton included ctenophores (lobate ctenophores,Beroespp.,Euplokamissp., and an undescribed cydippid) as well as calycophoran and physonect siphonophores. We discuss the distributions of these fauna, some of which represent the first record for the Norwegian Sea.


Sign in / Sign up

Export Citation Format

Share Document