scholarly journals Development of a new urban climate model based on the model PALM – Project overview, planned work, and first achievements

2019 ◽  
Vol 28 (2) ◽  
pp. 105-119 ◽  
Author(s):  
Björn Maronga ◽  
Günter Gross ◽  
Siegfried Raasch ◽  
Sabine Banzhaf ◽  
Renate Forkel ◽  
...  
2021 ◽  
Author(s):  
Ines Langer ◽  
Alexander Pasternack ◽  
Uwe Ulbrich ◽  
Henning W. Rust

<p>Mit einer Gitterweite von 1-10m kann das Stadtklimamodell PALM-4U (Maronga, et al. 2019) kleinskalige atmosphärische Prozesse auflösen, und unter anderem den Einfluss von Gebäuden und Vegetation detailliert berücksichtigen. Die Evaluierung des Modells erfolgt hier auf Basis von Langzeitbeobachtungen der Lufttemperatur und Feuchte an 32 verschiedenen Standorten im Berliner Stadtgebiet. Während einer Intensiven Messkampagne im Jahr 2018 standen acht weitere Messstationen zur Verfügung. Hier wird speziell der 16. Juli 2018 betrachtet, ein Tag mit langer Sonnenscheindauer (14h), bei dem eine Maximaltemperatur von 27.03°C an der institutseigenen WMO-Station 10381 im Botanischer Garten erreicht wurde. Die Evaluierung berücksichtigt den Grad der Horizontüberhöhung, den Sky View Faktor (SVF), der ein dimensionsloser Parameter zwischen 0 und 1 ist. Der SVF ist 1, wenn die komplette obere Himmelshälfte am Standort sichtbar ist und null wenn die Himmelshälfte nicht mehr zu erkennen ist. Ein potentielles Anwendungsszenario ist zum Beispiel die Prüfung der Frage, wie sich eine Nachverdichtung in einer Stadt auswirkt. Am Beispieltag zeigen die Messungen, dass es bei einem SVF von 0.29 zwischen 5 und 6 Uhr morgens bis zu 2.4K kälter ist als bei einen SVF größer 0.60. Außerdem tritt das Temperaturmaximum beim größeren SVF etwa 1,5 Stunden später ein. Die Abweichungen des Modells von den Beobachtungen für die Messorte können mit dem mittleren absoluten Fehler (MAE) quantifiziert werden. Auch hier ergibt sich ein systematischer Unterschied danach, wie groß der lokale SVF ist. Bei einem SVF von weniger als 0.29 ergibt sich im 24-Stunden-Mittel ein geringerer Fehler (1.53 K bei Mess- und Modelldaten-Frequenz von 5min) als bei  einem SVF größer als 0.6 (1.76 K). Hierzu trägt bei, dass die beobachtete Amplitude des Tagesgangs von MAE bei einem SVF größer als 0.6 vom Modell um bis zu 4.5 K unterschätzt wird. Dies liegt insbesondere an den Temperaturen zwischen Sonnenuntergang (19 Uhr) und Mitternacht, die im Modell bei nahezu sichtbarem Himmel zu hoch sind.</p> <p>Literatur: Maronga, B., G. Groß, S. Raasch, S. Banzhaf, R. Forkel, W. Heldens, F. Kanani-Sühring, A. Matzarakis, M. Mauder, D. Pavlik, J. Pfafferott, S. Schubert, G. Seckmeyer, H. Sieker, K. Winderlich (2019): Development of a new urban climate model based on the model PALM - Project overview, planned work, and first achievements, Met. Z., 28, 105-119 DOI: 10.1127/metz/2019/0909</p>


2008 ◽  
Vol 64 (3-4) ◽  
pp. 119-128 ◽  
Author(s):  
Alessandra Giannini ◽  
Michela Biasutti ◽  
Michel M. Verstraete

2016 ◽  
Author(s):  
M. García-Díez ◽  
D. Lauwaet ◽  
H. Hooyberghs ◽  
J. Ballester ◽  
K. De Ridder ◽  
...  

Abstract. As most of the population lives in urban environments, the simulation of the urban climate has become a key problem in the framework of the climate change impact assessment. However, the high computational power required by these simulations is a severe limitation. Here we present a study on the performance of a Urban Climate Model (UrbClim), designed to be several orders of magnitude faster than a full-fledge mesoscale model. The simulations are validated with station data and with land surface temperature observations retrieved by satellites. To explore the advantages of using a simple model like UrbClim, the results are compared with a simulation carried out with a state-of-the-art mesoscale model, the Weather Research and Forecasting model, using an Urban Canopy model. The effect of using different driving data is explored too, by using both relatively low resolution reanalysis data (70 km) and a higher resolution forecast model (15 km). The results show that, generally, the performance of the simple model is comparable to or better than the mesoscale model. The exception are the winds and the day-to-day correlation in the reanalysis driven run, but these problems disappear when taking the boundary conditions from the higher resolution forecast model.


2020 ◽  
Author(s):  
Yihui Zhou ◽  
Yi Zhang ◽  
Jian Li ◽  
Rucong Yu ◽  
Zhuang Liu

Abstract. Targeting a long-term effort towards a global weather and climate model with a local refinement function, this study systematically configures and evaluates the performance of an unstructured model based on the variable-resolution (VR) approach. Aided by the idealized dry- and moist-atmosphere tests, the model performance is examined in an intermediate degree of complexity. The dry baroclinic wave simulations suggest that the 3D VR-model can reproduce comparable solutions in the refined regions as a fine-resolution quasi-uniform (QU) mesh model, although the global errors increase. The variation of the mesh resolution in the transition zone does not adversely affect the wave pattern. In the coarse-resolution area, the VR model simulates a similar wave distribution to the low-resolution QU model. Two multi-region refinement approaches, including the hierarchical and polycentric refinement modes, further testify the model performance under a more challenging environment. The moist idealized tropical cyclone test further enables us to examine the model ability in terms of resolving fine-scale structures. It is found that the VR model can have the tropical cyclone stably pass the transition zone in various configurations. A series of sensitivity tests examines the model performance in a hierarchical refinement mode, and the solutions exhibit consistency even when the VR mesh is slightly perturbed by one of the three parameters that control the density function. Moreover, only the finest resolution has a dominant impact on the fine-scale structures in the refined region. The tropical cyclone, starting from the 2nd-refinement region and passing through the inner transition zone, gets intensified and possesses a smaller area coverage in the refined regions, as compared to the QU-mesh model that has the same number of grid points. Such variations are consistent with the behavior that one may observe when uniformly refining the QU-mesh model. Besides the horizontal resolution, the intensity of the tropical cyclone is also influenced by the Smagorinsky horizontal diffusion coefficient. The VR model exhibits higher sensitivity in this regard, suggesting the importance of parameter tuning and proper model configurations.


2021 ◽  
Author(s):  
Karolin S. Ferner ◽  
K. Heinke Schlünzen ◽  
Marita Boettcher

<p>Urbanisation locally modifies the regional climate: an urban climate develops. For example, the average wind speed in cities is reduced, while the gustiness is increased. Buildings induce vertical winds, which influence the falling of rain. All these processes lead to heterogeneous patterns of rain at ground and on building surfaces. The small-scale spatial rain heterogeneities may cause discomfort for people. Moreover, non-uniform wetting of buildings affects their hydrothermal performance and durability of their facades.</p><p>Measuring rain heterogeneities between buildings is, however, nearly impossible. Building induced wind gusts negatively influence the representativeness of in-situ measurements, especially in densely urbanised areas. Weather radars are usually too coarse and, more importantly, require an unobstructed view over the domain and thus do not measure ground precipitation in urban areas. Consequently, researchers turn to numerical modelling in order to investigate small-scale precipitation heterogeneities between buildings.</p><p>In building science, numerical models are used to investigate rain heterogeneities typically focussing on single buildings and vertical facades. Only few studies were performed for more than a single building or with inclusion of atmospheric processes such as radiation or condensation. In meteorology, increasing computational power now allows the use of small-scale obstacle-resolving models resolving atmospheric processes while covering neighbourhoods.</p><p>In order to assess rain heterogeneities between buildings we extended the micro-scale and obstacle-resolving transport- and stream model MITRAS (Salim et al. 2019). The same cloud microphysics parameterisation as in its mesoscale sister model METRAS (Schlünzen et al., 2018) was applied and boundary conditions for cloud and rain water content at obstacle surfaces were introduced. MITRAS results are checked for plausibility using radar and in-situ measurements (Ferner et al., 2021). To our knowledge MITRAS is the first numerical urban climate model that includes rain and simulates corresponding processes.</p><p>Model simulations were initialised for various wind speeds and mesoscale rain rates to assess their influence on the heterogeneity of falling rain in a domain of 1.9 x 1.7 km² around Hamburg City Hall. We investigated how wind speed or mesoscale rain rate influence the precipitation patterns at ground and at roof level. Based on these results we assessed the height dependence of precipitation. First analyses show that higher buildings receive more rain on their roofs than lower buildings; the results will be presented in detail in our talk.</p><p>Ferner, K.S., Boettcher, M., Schlünzen, K.H. (2021): Modelling the heterogeneity of rain in an urban neighbourhood. Publication in preparation</p><p>Salim, M.H., Schlünzen, K.H., Grawe, D., Boettcher, M., Gierisch, A.M.U., Fock B.H. (2018): The microscale obstacle-resolving meteorological model MITRAS v2.0: model theory. Geosci. Model Dev., 11, 3427–3445, https://doi.org/10.5194/gmd-11-3427-2018.</p><p>Schlünzen, K.H., Boettcher, M., Fock, B.H., Gierisch, A.M.U., Grawe, D., and Salim, M. (2018): Scientific Documentation of the Multiscale Model System M-SYS. Meteorological Institute, Universität Hamburg. MEMI Technical Report 4</p>


2021 ◽  
Author(s):  
Antonina Kriuger ◽  
Alexander Reinbold ◽  
Martina Schubert-Frisius ◽  
Jörg Cortekar

<p>Cities are particularly vulnerable to climate change. At the same time, cities change slowly. Accordingly, preparatory measures to adapt to climate change have to be taken urgently. High-performance urban climate models with various applications can form the basis for prospective planning decisions, however, as of today no such model exists that can be easily applied outside of the scientific community. Therefore, the funding program Urban Climate Under Change [UC]<sup>2</sup> aims to further develop the new urban climate model PALM-4U (Parallelized Large-Eddy Simulation Model for Urban Applications) into a practice-oriented and user-friendly product that meets the needs of municipalities and other practical users in addition to scientific research.</p><p>Specifically, the high-performance model PALM-4U allows simulation of entire large cities comprising the area over 1.000 km<sup>2</sup> with a grid size of down to few meters. One of our goals within the project ProPolis is to design and test the practical implementation of PALM-4U in standard and innovative application fields which include thermal comfort (indices like PT, PET, UTCI), cold air balance (source areas, reach and others), local wind comfort (indices derived from medium winds and gusts) as well as dispersion of pollutants.</p><p>In close cooperation with our practice partners, we explore the potential of PALM-4U to support the urban planning processes in each specific application setting. Additionally, with development of the fit for purpose graphic user interface, manuals and trainings we aim to enable practitioners to apply the model for their individual planning questions and adaptation measures.</p><p>In our presentation, we will show an application case of PALM-4U in a major German city. We will investigate the effect of a planned development area on the local climate and the impact of different climate change adaptation measures (such as extensive vs. intensive green roofs). The comparative simulations of the current state and planning scenarios with integrated green and blue infrastructure should provide arguments for the municipal decision making in consideration of climate change aspects in a densely built-up environment, e.g. urban heat stress.</p>


2018 ◽  
Vol 51 (5) ◽  
pp. 774-787 ◽  
Author(s):  
SG Varghese ◽  
CP Kurian ◽  
VI George ◽  
M Varghese ◽  
TM Sanjeev Kumar

Energy efficiency strategies based on daylight-artificial light integration have grown exponentially in recent years. Taking into account the dynamics to be considered for control and the dependence on natural and occupancy factors, it is better to use a test workbench prior to setting up the final control scheme. This work describes a climate model based test workbench for the real time testing of the control of luminaires and window blinds in a daylight-artificial light integrated scheme. The established climate model based control scheme suitable for the optimum integration of visual comfort, thermal comfort, and energy consumption can be tested for any ecological conditions. The input irradiance from a BF5 sensor, the internal temperature from a Micro DAQ logger, the occupancy and photo sensors associated with the luminaire all provide input data for the test workbench. A fuzzy logic based motorized window blind controller and look-up table based dimming of LED luminaires are used to set the required illuminance with reduced load on the heating, ventilation, and air conditioning system. The anticipated synergetic effects of the test workbench have been validated using real time climate data. The test work bench is established on a Labview platform and developed as a standalone system using myRIO.


2019 ◽  
Vol 201 ◽  
pp. 53-69 ◽  
Author(s):  
Anita Bokwa ◽  
Jan Geletič ◽  
Michal Lehnert ◽  
Maja Žuvela-Aloise ◽  
Brigitta Hollósi ◽  
...  

2020 ◽  
Vol 20 ◽  
pp. 100193
Author(s):  
Jörg Cortekar ◽  
Luise Willen ◽  
Björn Büter ◽  
Matthias Winkler ◽  
Rick Hölsgens ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document