Facies architecture of fluviatile deposits of the Jurassic-Cretaceous Bertangga Formation, Peninsular Malaysia

2020 ◽  
Vol 298 (2) ◽  
pp. 177-195
Author(s):  
Hassan Baioumy ◽  
Chong Jing Ting ◽  
Sherif Farouk ◽  
Khaled Al-Kahtany

Bertangga Formation is a part of the Jurassic-Cretaceous non-marine sequences in Thailand and Malaysia. However, its facies analysis and depositional model have not been investigated in detail. Eleven lithofacies have been described in the Bertangga Formation and combined five facies associations including channel, point bar, floodplain, crevasse splay and swamp facies associations. Channel deposits are stacked bodies of fining upward sequences with prevalent erosional bases, formed by vertical aggradation and avulsion of channels. Point bar sands comprise cross bedded sandstone bodies formed in upper flow regime and possible lateral accretion surfaces. Crevasse splay deposits form sheets of fine-to-medium-grained sandstone. Floodplain sediments are composed of motteled grey mudstone. Swamp depositional environment is characterized by an association of coal, carbonaceous shale and siltstone. Facies analysis allows reconstruction of the depositional environment of the Bertangga Formation as a meandering fluvial system. Facies association also shows the increasingly distal and fine-grained trend from west to east of the studied area, which suggests possible eastward paleo-flow direction of the river. The existence of kaolinite in all samples indicates weathering of felsic rocks under acidic conditions. In the same time, the presence of smectite in the eastern part of the study area may suggest a contribution of mafic and/or volcanic rocks to the source of sediments in this area.

2020 ◽  
Vol 70 (1) ◽  
pp. 153-162
Author(s):  
Azyan Syahira Azmi ◽  
◽  
Mohd Suhaili Ismail ◽  
Jasmi Ab Talib ◽  
Nur Marina Samsudin ◽  
...  

Spatial lithofacies and lithofacies association serves as one of the reliable methods in assessing the depositional process of sediments and interpreting its depositional environment. The method of facies analysis is adapted in this study where four newly exposed stratigraphic sections along the Jerantut-Maran road in Jerantut, Central Pahang of Peninsular Malaysia were studied. Previous studies showed that the environment of deposition of these continental deposits is broadly of braided-meandering river. Sedimentological data from the newly exposed stratigraphic sections had given a better understanding on the sedimentation processes involved in these deposits where interpretation on the environment of deposition is construed up to its sub-environment. The main lithofacies recognized include conglomerate, sandstone, and fine-grained facies. The facies associations identified include (i) massive to laminated silt/mudstone, (ii) massive sandstone, (iii) thin to thick ripple to parallel laminated sandstone, (iv) conglomeratic sandstone, (v) graded channelized sandstone, (vi) coarsening upwards medium bedded sandstone and (vii) heterolithic sandstone. The different facies associations are grouped to four (4) facies assemblages showing characteristics of certain environment: (1) floodplain, (2) channel bar complex, (3) point bar and (4) crevasse splay. Floodplain facies assemblage is marked by fine-grained facies, mainly siltstone/mudstone and fine-grained sands with lower flow regime structures. Channel bar complex is identified by high energy deposits of coarse-to-medium grained sandstones often with scoured bottom and lenticular geometry. Point bar is recognized by the lateral accretion surfaces often consisting of normal graded sandstone with sharp top and bottom contact, sometimes capped with thin mudstones. Crevasse splay facies assemblage is characterized by heterolithic sandstone, dominated by flaser-wavy bedding and coarsening upwards medium bedded sandstone that is overlain by fine-grained facies of the floodplain assemblage. The overall facies based on an outcrop scale suggests general features of fluvial facies with fluctuations in flow energy. The environment of deposition is thus interpreted to be of braided river with floodplains and isolated point bar.


2019 ◽  
Vol 76 ◽  
pp. 04009
Author(s):  
Sugeng Sapto Surjono ◽  
Mohd. Shafeea Leman ◽  
Che Aziz Ali ◽  
Kamal Roslan Mohamed ◽  
Fathan Hanifi Mada M

Volcaniclastic rocks in East Johor Basin are found in a relatively great abundance comprising Sedili and Pengerang Formations excluding the metamorphics, siliciclastics, and granites. Since the volcaniclastic rocks are found in a different formation, this study aims to find out the characteristics of each rock. Geology, petrography, and geochemical analyses were elaborated to reveal the petrogenesis and depositional environment in the studied area on the basis of fieldwork data and 24 samples collected from outcrops. The Sedili and Pengerang Formations are dominated by acidic rocks of rhyolite, rhyodacite, ignimbrite, and lava classifiied into calc-alkaline magma series which indicates a subduction-related product. Moreover, those acidic rocks are grouped into active continental margin. Eventhough volcanic rocks in Sedili and Pengerang Formations exhibit similar characteristics, they are different in several major contents. Therefore, it is inferred that both Sedili and Pengerang Formations were deposited in different phase. Coincidentally, depositional environment of both formations is also distinct. Sedili Formation were deposited in the subaerial to shallow marine, meanwhile, Pengerang Formation is interpreted to be deposited in deeper depositional setting.


2013 ◽  
Vol 40 (4) ◽  
pp. 283-293 ◽  
Author(s):  
Patrick Schielein ◽  
Johanna Lomax

Abstract This study investigates the potential of luminescence to date deposits from different fluvial sedimentary environments; namely point bar deposits, sandy and silty channel fills and floodplain sediments. Samples were taken from Holocene (<5 ka) terraces of the Lech and Danube rivers, for which independent age constraint is available through 14C ages, archaeological data and historical maps. OSL-ages were obtained using small aliquots of coarse grain quartz for the majority of samples. Two further samples were dated by the IRSL-signals of polymineral fine grain extracts, as no sufficient number of coarse grains could be extracted from these sediments. In order to detect and ac-count for incomplete bleaching, we used the decision process suggested by Bailey and Arnold [Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25, 2475–2502, 2006]. Although their model was designed for single grains of quartz, our study shows that it is also applicable to multiple grains of quartz, pro-vided that a low number of luminescent grains is present on one aliquot. Luminescence ages of point bar deposits and a sandy channel fill correspond most closely to the independent age control. In the floodplain, sand-striped floodplain channel deposits were incompletely bleached to a moderate degree, yielding ages with acceptable overestimations, while fine-grained floodplain deposits were worst bleached. One crevasse splay deposit was so severely incompletely bleached that none of the age models was able to yield accurate ages.


1973 ◽  
Vol 10 (6) ◽  
pp. 817-845 ◽  
Author(s):  
Colin C. Turner ◽  
Roger G. Walker

In the Archean greenstone belt at Sioux Lookout, N.W. Ontario, a lowermost belt of volcanic rocks is unconformably overlain by sediments of the Abram Group. Our mapping has subdivided the Abram Group into three formations. The lowest (Ament Bay Formation) consists of interbedded conglomerates and sandstones. The sandstones contain large-scale cross-stratification, and the conglomerates and sandstones both lack graded bedding. The depositional environment was a subaerial alluvial fan—this is the first description of such a feature based upon modern sedimentological work in Archean rocks. The Daredevil Formation conformably overlies the Ament Bay Formation, and is composed of felsic and basic tuffs, and some interbedded turbidites. The uppermost (Little Vermilion) Formation is composed entirely of turbidites.The petrography of the sand, and large clasts, in the Ament Bay Formation indicates derivation from a dominantly granodioritic terrain. Some granodiorite boulders contain greenstone xenoliths, implying intrusion of the granodiorite after formation of the lowermost belt of volcanic rocks.In a final section of the paper, we define two Archean facies associations—a Resedimented association containing turbidites, pebbly mudstones, resedimented conglomerates, and basinal black argillites; and a Continental association, containing alluvial fan deposits, and possible coastal deposits from South Africa and Australia. The facies sequence in the Sioux Lookout belt is Continental followed by Resedimented facies, the reverse of the normal geosynclinal flysch (resedimented) → molasse (continental) sequence.


EKSPLORIUM ◽  
2017 ◽  
Vol 38 (1) ◽  
pp. 29
Author(s):  
Heri Syaeful ◽  
Adi Gunawan Muhammad

ABSTRAKKegiatan karakterisasi material bawah permukaan penyusun pondasi tapak merupakan bagian dari studi tapak instalasi nuklir. Karakterisasi dilakukan dengan berbagai metode, diantaranya pemahaman tentang sistem pengendapan formasi batuan. Sebagai bagian dari metode interpretasi lingkungan pengendapan, analisis pemodelan fasies berdasarkan elektrofasies memberikan informasi yang cepat mengenai sistem pengendapan suatu formasi batuan. Metodologi yang digunakan adalah dengan interpretrasi log sinar gamma (log GR) menggunakan korelasi relatif antara variasi bentuk log dan fasies sedimentasi. Berdasarkan analisis diketahui Formasi Bojongmanik terbentuk pada lingkungan marine-lagoonal dengan pengaruh gelombang sangat rendah. Log GR yang menunjukan bentuk funnel, bergerigi dan simetris, mengindikasikan fasies shoreface, lagoon, dan tidal point bar. Arah sedimentasi, cekungan, dan suplai pada pengendapan sedimen Formasi Bojongmanik diinterpretasikan relatif ke utara. Formasi Serpong diendapkan pada sistem sungai bermeander dan tersusun atas endapan point bar, crevasse splay dan floodplain. Hasil analisis ini diharapkan dapat menjadi panduan dalam analisis lanjutan terkait karakterisasi material pondasi. ABSTRACTThe activity of subsurface material composing site foundation characterization is part of nuclear installation siting study. Characterization conducted by several methods, such as understanding the depositional environment of rock formations. As a segment of depositional environment interpretation method, facies model analysis based on electrofacies provides quicker information on depositional system of rock formation. Methodology applied is gamma ray log (log GR) interpretation using relative correlation between log shape variation and sedimentation facies. Based on the analysis, Bojongmanik Formation was deposited on marine-lagoonal environment with very low wave influence. Log GR that shows shape of funnel, serrated, and symmetry, indicate shoreface, lagoon, and tidal point bar facies. The direction of sedimentation, basin, and supply of Bojongmanik Formation interpreted relatively to the north. Serpong Formation deposited on meandering river system, and composed of point bar deposit, crevasse splay, and floodplain deposit. The result of analysis is expected to be guidance in further analysis related to the characterization of foundation materials.


Author(s):  
B. Andika

The Kutai Basin contains prolific reserves of oil and gas. The study of depositional environments is one of the goals of oil and gas exploration. The location of this research is situated in the Tanah Merah area, Samarinda. The objective of this research was to analyse outcrops of the Pulau Balang Formation exposed in the Tanah Merah area to determine the depositional environment. Site specific studies were conducted at 3 localities in this area; TM1, TM2 and TM3. This study combines geological mapping, measured sections, facies analysis, petrography, ichnofacies analysis and microfossil analysis. Geological mapping was carried out to determine the distribution of rock units and geological structures. Measured sections were used for facies analysis and the identification of sedimentary structures and ichnofacies. Petrography was carried out to determine the mineral content of rocks and microfossil analysis for palaeobathymetric environmental analysis. The geological structure of the study area comprises a NE-SW trending anticline and syncline and a left lateral strike-slip fault with E-W direction. The study area is entirely within the Middle Miocene age Pulau Balang Formation and can be divided into three facies associations. The TM1 facies association comprises strata interpreted to be deposited in a supratidal marsh and intertidal flat environment. The TM2 facies association comprises strata interpreted to be deposited in a subtidal, intertidal, and supratidal environment. The TM3 facies association comprises strata interpreted to be deposited in a shoreface environment. The petrography of the study area indicates that rock units predominantly comprise quartz wacke and lithic wacke. Two ichnofacies were identified in the research area 2, namely the Skolithos ichnofacies and the Skolithos-Cruziana ichnofacies and contain ichnogenera namely Ophiomorpha, Skolithos, Planolites, Thalassinoides, Paaleophycus. Microfossil analysis found benthonic foraminifera species including Nodosaria lamellala, N. radicula, Vaginulinopsis tricarinata, Lagena costata, Striatissima vaginulina, Bulimina lappa, Planularia auris, Quinqueloculina seminulum, Bolivina punctata and Lahena laevis. Based on the presence of these microfossils and ichnofacies, it is interpreted that the research area was deposited in a neritic-bathyal environment.


2015 ◽  
Vol 45 (2) ◽  
pp. 243-258 ◽  
Author(s):  
Juliana Okubo ◽  
Ricardo Lykawka ◽  
Lucas Veríssimo Warren ◽  
Julia Favoreto ◽  
Dimas Dias-Brito

<p>Carbonate rocks from the Macaé Group (Albian) represent an example of carbonate sedimentation related to the drift phase in Campos Basin. This study presents depositional features, integrating them with diagenetic and stratigraphic aspects of the Macaé Group carbonates including the upper part of the Quissamã Formation and the lower part of the Outeiro Formation. Macroscopic analyses in cores and microscopic ones in thin sections allowed the recognition of eleven sedimentary facies - nine of them corresponding to the Quissamã Formation and two of them representing the Outeiro Formation. These facies were grouped into five facies associations. Oolitic grainstones and oncolitic grainstones are interpreted to be deposited in shallow depth probably in shoals above the fair weather wave base. The interbanks between shoals were formed in less agitated waters and characterized by deposition of peloidal bioclastic packstones and wackestones representative of sedimentation in calm waters. Bioclastic packstones and oolitic packstones/wackestones represent allochthonous deposits related to the beginning of the regional drowning that occur in upper Quissamã Formation. Pithonellids wackestones and bioclastic wackestones with glauconite are related to deep water deposits, characteristics of the Outeiro Formation. Post-depositional features revealed the action of diagenetic processes as, micritization, cimentation, dissolution, compaction, dolomitization and recrystallization occurred during the eo- and mesodiagenesis phases. Vertical facies analysis suggests shallowing upward cycles stacked in a sequence progressively deeper towards the top (from the Quissamã Formation to the Outeiro Formation).</p>


Author(s):  
Onyewuchi, Chinedu Vin ◽  
Minapuye, I. Odigi

Facies analysis and depositional environment identification of the Vin field was evaluated through the integration and comparison of results from wireline logs, core analysis, seismic data, ditch cutting samples and petrophysical parameters. Well log suites from 22 wells comprising gamma ray, resistivity, neutron, density, seismic data, and ditch cutting samples were obtained and analyzed. Prediction of depositional environment was made through the usage of wireline log shapes of facies combined with result from cores and ditch cuttings sample description. The aims of this study were to identify the facies and depositional environments of the D-3 reservoir sand in the Vin field. Two sets of correlations were made on the E-W trend to validate the reservoir top and base while the isopach map was used to establish the reservoir continuity. Facies analysis was carried out to identify the various depositional environments. The result showed that the reservoir is an elongate , four way dip closed roll over anticline associated with an E-W trending growth fault and contains two structural high separated by a saddle. The offshore bar unit is an elongate sand body with length: width ratio of >3:1 and is aligned parallel to the coast-line. Analysis of the gamma ray logs indicated that four log facies were recognized in all the wells used for the study. These include: Funnel-shaped (coarsening upward sequences), bell-shaped or fining upward sequences, the bow shape and irregular shape. Based on these categories of facies, the depositional environments were interpreted as deltaic distributaries, regressive barrier bars, reworked offshore bars and shallow marine. Analysis of the wireline logs and their core/ditch cuttings description has led to the conclusion that the reservoir sandstones of the Agbada Formation in the Vin field of the eastern Niger Delta is predominantly marine deltaic sequence, strongly influenced by clastic output from the Niger Delta. Deposition occurred in a variety of littoral and neritic environment ranging from barrier sand complex to fully marine outer shelf mudstones.


2019 ◽  
Vol 16 (32) ◽  
pp. 930-944
Author(s):  
G. BABAEE KHOU ◽  
M. H. ADABI ◽  
D. JAHANI ◽  
S. H. VAZIRI

To understand microfacies, depositional environment and geochemistry of Upper Permian rocks in Alborz region, the type sections of Ruteh Formation were studied. During the Permian, the Alborz region was a part of the east-west trending Paleotethys sea. Stratigraphic studies indicate that the Ruteh Formation in Ruteh section is composed of thin to massive limestone, argillaceous limestone interbedded with shale, is overlain by distinct laterite horizon of the Elika Formation and is underlain by the disconformity by the Dorud Formation. Facies analysis and petrographic studies led to the recognition of 11 microfacies in Ruteh section. These facies were deposited in 4 facies belts such as tidal flat, lagoon, shoal and open marine sub-environment. The Permian calcareous algae in the Ruteh Formation are widespread and well documented to determine the environment and microfacies of Permian deposits. Cementation and dolomitization are the main diagenetic processes in Ruteh Formation. Based on petrographic (size and fabric) studies, 4 dolomite types such as dolomicrite, dolomicrospar, dolospar, and dolomite cement were recognized. Seawater was the main source of Mg for early diagenetic dolomite (type 1), while Mg for late diagenetic dolomite (types 2,3,4) probably were sourced by shale pressing processes and pressure solution. Major and minor element studies led to there cognition of aragonite mineralogy. The geochemical study illustrates that these carbonates were affected mostly by meteoric diagenesis, which is occurred in a semi-close to open diagenetic system.


2018 ◽  
Vol 34 (2) ◽  
pp. 699
Author(s):  
Μ. ΚΑΤΗ

The facies analysis of the Eocene limestones in the Aghioi Pantes section in central Zakynthos, part of the Preapulian carbonate sequence in the greater area, showed three megafacies types: a) graded beds, in which two main subtypes have been recognized, medium- to thin-bedded calcarenites-calcilutites and thick-bedded ruditic calcarenites, consisting mainly of redeposited shallow-water carbonate sands (mostly bioclasts of nummulites and echinoids); based on their sedimentary structures they have been interpreted as low density turbidite and high density turbidite (or sandy debris flows) deposits correspondingly, b) calcareous conglomerates consisting of shallow-water facies lithoclasts and abundant pelagic intraclasts all of which have been interpreted as debris flow deposits and c) folded strata of pelagic-hemipelagic composition that have been interpreted as slumps. Subsequently, the studied limestones constitute exclusively deep-water resedimented facies having been deposited mainly through sediment gravity flows, carrying significant amounts of shallow-water bio- lithoclastic material. The distribution and the organization of this facies association, with the dominance in particular of the base cut-out turbidites, suggest as depositional environment of the studied Eocene limestones a "low" in the outer slope connecting the Preapulian platform with the adjacent Ionian basin.


Sign in / Sign up

Export Citation Format

Share Document