scholarly journals Environment Of Deposition Of The Jurassic-Cretaceous Continental Deposit In Central Pahang (Peninsular Malaysia) By Sedimentary Facies Analysis

2020 ◽  
Vol 70 (1) ◽  
pp. 153-162
Author(s):  
Azyan Syahira Azmi ◽  
◽  
Mohd Suhaili Ismail ◽  
Jasmi Ab Talib ◽  
Nur Marina Samsudin ◽  
...  

Spatial lithofacies and lithofacies association serves as one of the reliable methods in assessing the depositional process of sediments and interpreting its depositional environment. The method of facies analysis is adapted in this study where four newly exposed stratigraphic sections along the Jerantut-Maran road in Jerantut, Central Pahang of Peninsular Malaysia were studied. Previous studies showed that the environment of deposition of these continental deposits is broadly of braided-meandering river. Sedimentological data from the newly exposed stratigraphic sections had given a better understanding on the sedimentation processes involved in these deposits where interpretation on the environment of deposition is construed up to its sub-environment. The main lithofacies recognized include conglomerate, sandstone, and fine-grained facies. The facies associations identified include (i) massive to laminated silt/mudstone, (ii) massive sandstone, (iii) thin to thick ripple to parallel laminated sandstone, (iv) conglomeratic sandstone, (v) graded channelized sandstone, (vi) coarsening upwards medium bedded sandstone and (vii) heterolithic sandstone. The different facies associations are grouped to four (4) facies assemblages showing characteristics of certain environment: (1) floodplain, (2) channel bar complex, (3) point bar and (4) crevasse splay. Floodplain facies assemblage is marked by fine-grained facies, mainly siltstone/mudstone and fine-grained sands with lower flow regime structures. Channel bar complex is identified by high energy deposits of coarse-to-medium grained sandstones often with scoured bottom and lenticular geometry. Point bar is recognized by the lateral accretion surfaces often consisting of normal graded sandstone with sharp top and bottom contact, sometimes capped with thin mudstones. Crevasse splay facies assemblage is characterized by heterolithic sandstone, dominated by flaser-wavy bedding and coarsening upwards medium bedded sandstone that is overlain by fine-grained facies of the floodplain assemblage. The overall facies based on an outcrop scale suggests general features of fluvial facies with fluctuations in flow energy. The environment of deposition is thus interpreted to be of braided river with floodplains and isolated point bar.

2020 ◽  
Vol 298 (2) ◽  
pp. 177-195
Author(s):  
Hassan Baioumy ◽  
Chong Jing Ting ◽  
Sherif Farouk ◽  
Khaled Al-Kahtany

Bertangga Formation is a part of the Jurassic-Cretaceous non-marine sequences in Thailand and Malaysia. However, its facies analysis and depositional model have not been investigated in detail. Eleven lithofacies have been described in the Bertangga Formation and combined five facies associations including channel, point bar, floodplain, crevasse splay and swamp facies associations. Channel deposits are stacked bodies of fining upward sequences with prevalent erosional bases, formed by vertical aggradation and avulsion of channels. Point bar sands comprise cross bedded sandstone bodies formed in upper flow regime and possible lateral accretion surfaces. Crevasse splay deposits form sheets of fine-to-medium-grained sandstone. Floodplain sediments are composed of motteled grey mudstone. Swamp depositional environment is characterized by an association of coal, carbonaceous shale and siltstone. Facies analysis allows reconstruction of the depositional environment of the Bertangga Formation as a meandering fluvial system. Facies association also shows the increasingly distal and fine-grained trend from west to east of the studied area, which suggests possible eastward paleo-flow direction of the river. The existence of kaolinite in all samples indicates weathering of felsic rocks under acidic conditions. In the same time, the presence of smectite in the eastern part of the study area may suggest a contribution of mafic and/or volcanic rocks to the source of sediments in this area.


2015 ◽  
Vol 45 (2) ◽  
pp. 243-258 ◽  
Author(s):  
Juliana Okubo ◽  
Ricardo Lykawka ◽  
Lucas Veríssimo Warren ◽  
Julia Favoreto ◽  
Dimas Dias-Brito

<p>Carbonate rocks from the Macaé Group (Albian) represent an example of carbonate sedimentation related to the drift phase in Campos Basin. This study presents depositional features, integrating them with diagenetic and stratigraphic aspects of the Macaé Group carbonates including the upper part of the Quissamã Formation and the lower part of the Outeiro Formation. Macroscopic analyses in cores and microscopic ones in thin sections allowed the recognition of eleven sedimentary facies - nine of them corresponding to the Quissamã Formation and two of them representing the Outeiro Formation. These facies were grouped into five facies associations. Oolitic grainstones and oncolitic grainstones are interpreted to be deposited in shallow depth probably in shoals above the fair weather wave base. The interbanks between shoals were formed in less agitated waters and characterized by deposition of peloidal bioclastic packstones and wackestones representative of sedimentation in calm waters. Bioclastic packstones and oolitic packstones/wackestones represent allochthonous deposits related to the beginning of the regional drowning that occur in upper Quissamã Formation. Pithonellids wackestones and bioclastic wackestones with glauconite are related to deep water deposits, characteristics of the Outeiro Formation. Post-depositional features revealed the action of diagenetic processes as, micritization, cimentation, dissolution, compaction, dolomitization and recrystallization occurred during the eo- and mesodiagenesis phases. Vertical facies analysis suggests shallowing upward cycles stacked in a sequence progressively deeper towards the top (from the Quissamã Formation to the Outeiro Formation).</p>


2013 ◽  
Vol 63 (2) ◽  
pp. 175-199 ◽  
Author(s):  
Artur Kędzior ◽  
Mihai E. Popa

Abstract Kędzior, A. and Popa, E.M. 2013. Sedimentology of the Early Jurassic terrestrial Steierdorf Formation in Anina, Colonia Cehă Quarry, South Carpathians, Romania. Acta Geologica Polonica, 63 (2), 175-199. Warszawa. The continental, coal bearing Steierdorf Formation, Hettangian - Sinemurian in age, is included in the Mesozoic cover of the Reşiţa Basin, Getic Nappe, South Carpathians, Romania. The Steierdorf Formation can be studied in Anina, a coal mining center and an exceptional locality for Early Jurassic flora and fauna, occurring in the middle of the Reşiţa Basin. This paper presents the results of sedimentological, stratigraphical and paleobotanical researches undertaken in Colonia Cehă open cast mine in Anina, where the Steierdorf Formation outcrops widely. Several sedimentary facies associations have been described, these associations permitting the reconstruction of various depositional systems such as alluvial fans, braided and meandering river systems, as well as lacustrine and coal generating marsh systems of the Steierdorf Formation. The sedimentary associations recorded within the Steierdorf Formation show a gradual fining upward trend, pointing to a rising marine water table and a decreasing relief within the source area.


2013 ◽  
Vol 40 (4) ◽  
pp. 283-293 ◽  
Author(s):  
Patrick Schielein ◽  
Johanna Lomax

Abstract This study investigates the potential of luminescence to date deposits from different fluvial sedimentary environments; namely point bar deposits, sandy and silty channel fills and floodplain sediments. Samples were taken from Holocene (<5 ka) terraces of the Lech and Danube rivers, for which independent age constraint is available through 14C ages, archaeological data and historical maps. OSL-ages were obtained using small aliquots of coarse grain quartz for the majority of samples. Two further samples were dated by the IRSL-signals of polymineral fine grain extracts, as no sufficient number of coarse grains could be extracted from these sediments. In order to detect and ac-count for incomplete bleaching, we used the decision process suggested by Bailey and Arnold [Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25, 2475–2502, 2006]. Although their model was designed for single grains of quartz, our study shows that it is also applicable to multiple grains of quartz, pro-vided that a low number of luminescent grains is present on one aliquot. Luminescence ages of point bar deposits and a sandy channel fill correspond most closely to the independent age control. In the floodplain, sand-striped floodplain channel deposits were incompletely bleached to a moderate degree, yielding ages with acceptable overestimations, while fine-grained floodplain deposits were worst bleached. One crevasse splay deposit was so severely incompletely bleached that none of the age models was able to yield accurate ages.


EKSPLORIUM ◽  
2017 ◽  
Vol 38 (1) ◽  
pp. 29
Author(s):  
Heri Syaeful ◽  
Adi Gunawan Muhammad

ABSTRAKKegiatan karakterisasi material bawah permukaan penyusun pondasi tapak merupakan bagian dari studi tapak instalasi nuklir. Karakterisasi dilakukan dengan berbagai metode, diantaranya pemahaman tentang sistem pengendapan formasi batuan. Sebagai bagian dari metode interpretasi lingkungan pengendapan, analisis pemodelan fasies berdasarkan elektrofasies memberikan informasi yang cepat mengenai sistem pengendapan suatu formasi batuan. Metodologi yang digunakan adalah dengan interpretrasi log sinar gamma (log GR) menggunakan korelasi relatif antara variasi bentuk log dan fasies sedimentasi. Berdasarkan analisis diketahui Formasi Bojongmanik terbentuk pada lingkungan marine-lagoonal dengan pengaruh gelombang sangat rendah. Log GR yang menunjukan bentuk funnel, bergerigi dan simetris, mengindikasikan fasies shoreface, lagoon, dan tidal point bar. Arah sedimentasi, cekungan, dan suplai pada pengendapan sedimen Formasi Bojongmanik diinterpretasikan relatif ke utara. Formasi Serpong diendapkan pada sistem sungai bermeander dan tersusun atas endapan point bar, crevasse splay dan floodplain. Hasil analisis ini diharapkan dapat menjadi panduan dalam analisis lanjutan terkait karakterisasi material pondasi. ABSTRACTThe activity of subsurface material composing site foundation characterization is part of nuclear installation siting study. Characterization conducted by several methods, such as understanding the depositional environment of rock formations. As a segment of depositional environment interpretation method, facies model analysis based on electrofacies provides quicker information on depositional system of rock formation. Methodology applied is gamma ray log (log GR) interpretation using relative correlation between log shape variation and sedimentation facies. Based on the analysis, Bojongmanik Formation was deposited on marine-lagoonal environment with very low wave influence. Log GR that shows shape of funnel, serrated, and symmetry, indicate shoreface, lagoon, and tidal point bar facies. The direction of sedimentation, basin, and supply of Bojongmanik Formation interpreted relatively to the north. Serpong Formation deposited on meandering river system, and composed of point bar deposit, crevasse splay, and floodplain deposit. The result of analysis is expected to be guidance in further analysis related to the characterization of foundation materials.


2020 ◽  
Vol 57 (3) ◽  
pp. 331-347
Author(s):  
Hua Li ◽  
A.J. van Loon ◽  
Youbin He

The Late Ordovician Pingliang Formation accumulated along the southern margin of the Ordos Basin in China. The convergence of the Yangtze Plate and Sino-Korean Plate led to a trench–arc–basin system during the Middle Ordovician, with a platform- and slope-dominated setting in the east where a graben complicated the overall simple paleogeographical picture, relatively parallel zones of a platform and a slope setting in the middle, and a change from platform to slope to deep marine to a trench setting in the west. This configuration resulted in various types of gravity flow deposits and contourites with different compositions and pathways. The present study focuses on the typical characteristics of contourites in the geological record and the relationships between contour currents and gravity flows. The Pingliang Formation contains eleven lithofacies grouped into five facies associations. These facies associations represent deep sea autochthonous deposits, several types of debrites, turbidites, and contourites, as well as turbidites within which the fine-grained top portion was reworked by a contour current. The various lithofacies are concentrated in different parts of the study area: micritic contourites and debrites are concentrated in the eastern part; debrites, and sandstone and siltstone turbidites are concentrated in the middle part; and calcarenitic turbidites, contourites, and reworked turbidites occur in the western part. The main contour current ran parallel to the contour lines from east to west. Although most of the contour current continually moved westward in the eastern part of the study area, a minor part split off and followed a semicircular pathway through the Fuping Graben; its velocity became reduced here so that micritic contourites were deposited. The velocity of the contour current was increased locally when it entered a confined trough in the western part of the study area. The relatively high energy of the contour current here resulted in calcarenitic contourites. The velocity of the contour current was low where it ran through an open environment, resulting in fine-grained, thin contourites in the middle part of the study area. Large turbidity currents and debris flows occurred here, and their high energy destroyed almost all earlier deposited contourites. This explains why traces of contour currents in the middle part of the study are very scarce, although the east–west-running contour current must have passed through this area.


2014 ◽  
Vol 962-965 ◽  
pp. 160-163
Author(s):  
Si Si Cai ◽  
Wen Hui Huang ◽  
Meng Gong ◽  
De Yu Yan

This document studies the deposition condition in northeast Jizhong depression by using relevant data of cores, logging and scanning electron microscope. The result indicates that the study area has 7 kinds of lithofacies, including conglomerate, sandstone, siltstone, mudstone, bauxite, carbonate rock and coal seam . Bottom-up development in the study area cover tidal flat, lagoon, delta, meandering river and braided river, a total of five kinds of sedimentary facies. Benxi Formation, Taiyuan Formation and Shanxi Formation deposited in transitional facies, which has high generation potential of Hydrocarbon. Lower and upper Shihezi Formation is mainly a set of river deposition as a good reservoir. The top of upper Shihezi Formation and Shiqianfen Formation are mainly mudstone, which is conducive to seal oil and gas.


Author(s):  
Richmond Ideozu ◽  
Tochukwu Nduaguibe

The controls of depositional environments on reservoir quality have been evaluated in terms of porosity and permeability of the Gabo Field, Niger Delta, Nigeria. Data used in this research include Well logs, Core data and photos, and grain size analysis for Wells 51 and 52 in the study area. Standard methods as applicable in petrophysical and sedimentological analysis has been adopted. Thirteen reservoir units have been identified in wells 51 and 52 which had 5 reservoirs cored each. The lithofacies units of the identified reservoirs across the study area, comprise pebbly sands, coarse -, medium -, fine- and very fine-grained sands, sandy mud, silty sands and heteroliths. The heteroliths &ndash; very fine-grained silty muds are highly bioturbated. Ophiomorpha and skolithos are the major trace fossils with sedimentary structures (ripple lamination, wavy lenticular and planar beds, cross bedded sands, coarsening and fining upward). The facies associations interpreted for the study area are Channel and Coastal barrier systems and the environment of deposition as distributary channel, upper and lower shoreface. The sedimentary processes that deposited facies ranged from high energy regimes, reworking by waves to low energy with periodic influx of silts and muds. The average porosity and permeability for reservoirs in Well 51 is 16.7% and 1317 Md, reservoirs in Well 52 is 28.2% and 2330Md whereas porosity range for the study area is 2% - 32% and permeability is 1.2 &ndash; 10600 Md. The reservoir quality reservoir of the sand units in Well 51 (7, 9 and 13) and Well 52 (5, 7, 9, 11 and 13) is excellent - good, this is because of the dynamics environments of deposition (upper shoreface and distributary channel) as well as the mechanisms that play out during deposition such as bioturbation, sorting, sedimentary structures formed. Whereas the poor quality across the reservoirs especially the lower shoreface and prodelta facies is as result of lack bioturbation, connectivity, multiplicity of burrows that may have been plugged by clay and intercalation of shale and sand (heteroliths). This research has shown that environments of deposition have direct influence the reservoir quality in terms of porosity and permeability.


Palaios ◽  
2021 ◽  
Vol 36 (11) ◽  
pp. 339-351
Author(s):  
SARADEE SENGUPTA ◽  
DHURJATI P. SENGUPTA

ABSTRACT A bonebed of multiple skeletons of the Triassic horned reptile Shringasaurus indicus was discovered in the upper Denwa Formation, Satpura Gondwana Basin, India. The monotaxic bonebed contains multiple individuals of different ontogenic stages indicating herding behavior by Shringasaurus indicus. The herd was a mixed-sex herd. The adult and sub-adult bones in the bonebed exceed the number of juvenile bones. The distribution of the bones was slightly patchy, bones of different individuals were admixed, and several bones were piled up implying mass mortality. The bonebed occurs in a fine-grained mudrock that is hydraulically incompatible with long-distance transport and concentration by currents. Sedimentary facies analysis indicates that the bonebed accumulated and was buried in a crevasse splay deposit between two ENE-WSW trending channel-fill complexes. The northern channel-fill complex was formed by unidirectional flow with lateral channel migration towards the south and with minor contemporaneous tectonic subsidence. Repeated breaching of the levee by this channel flow led to the incremental development of the crevasse splay deposit. The herd of Shringasaurus indicus, which lived near to the perennial channel, was drowned en masse and the carcasses were trapped within the muddy sediments of the crevasse splay deposit. Apart from a partially articulated skeleton, the rest of the bones were disarticulated but remained associated. The bones show little evidence of post-mortem modifications. With a continuous supply of the sediments through the spillover channels, the bones were buried before complete disarticulation and dispersal had taken place.


2021 ◽  
Vol 13 (1) ◽  
pp. 748-781
Author(s):  
Christopher Baiyegunhi ◽  
Kuiwu Liu

Abstract The stratigraphy of the Ecca Group has been subdivided into the Prince Albert, Whitehill, Collingham, Ripon, and Fort Brown Formations in the Eastern Cape Province, South Africa. In this article, we present detailed stratigraphic and facies analyses of borehole data and road-cut exposures of the Ecca Group along regional roads R67 (Ecca Pass), R344 (Grahamstown-Adelaide), R350 (Kirkwood-Somerset East), and national roads N2 (Grahamstown-Peddie) and N10 (Paterson-Cookhouse). Facies analysis of the Ecca Group in the study area was performed to deduce their depositional environments. Based on the lithological and facies characteristics, the stratigraphy of the Prince Albert, Whitehill, Collingham, and Fort Brown Formations is now subdivided into two informal members each, while the Ripon Formation is subdivided into three members. A total of twelve lithofacies were identified in the Ecca Group and were further grouped into seven distinct facies associations (FAs), namely: Laminated to thin-bedded black-greyish shale and mudstones (FA 1); Laminated black-greyish shale and interbedded chert (FA 2); Mudstone rhythmite and thin beds of tuff alternation (FA 3); Thin to thick-bedded sandstone and mudstone intercalation (FA 4); Medium to thick-bedded dark-grey shale (FA 5); Alternated thin to medium-bedded sandstone and mudstone (FA 6); and Varved mudstone rhythmite and sandstone intercalation (FA 7). The FAs revealed gradually change of sea-level from deep marine (FA 1, FA 2, FA 3 and FA 4, FA 5, and FA 6) to prodelta environment (FA 7). This implies that the main Karoo Basin was gradually filling up with Ecca sediments, resulting in the gradual shallowing up of the water depth of the depositional basin.


Sign in / Sign up

Export Citation Format

Share Document