Geothermal Investigations on Observation Wells in Berlin (West) and their Signification for the Economics of Water Supply and Distribution

1987 ◽  
Vol 138 (2) ◽  
pp. 491-501
Author(s):  
Hanskarl Brühl ◽  
Roland Otto
2011 ◽  
Vol 6 (4) ◽  
Author(s):  
Virgilio C. Rivera

Prior to Manila Water's entry into the East Zone as MWSS's concessionaire in 1997, the water supply and distribution system was characterized by low service coverage, high levels of leakage due to pilferage and deteriorating pipes, limited water availability and poor operating efficiencies. This presentation details how the MWSS PPP framework, coupled with Manila Water's multi-pronged, corporate approach, has been key to reversing the sorry state which Metro Manila's East Zone found itself in before 1997. Crucial to the success of Manila Water was the adoption of a multi-pronged corporate strategy composed of five interrelated variables: (1) Profit Model, (2) Market/Customer, (3) Resources, (4) Systems and Processes and (5) Talent and Organization. The presentation explains how these factors have come together to bring out the “virtuous cycle” in the East Zone. The numerous achievements of Manila Water over the past thirteen years, which are highlighted in the last section of the presentation, have been directly attributed to the successful corporate strategy employed by Manila Water.


2005 ◽  
Vol 15 (1) ◽  
pp. 93-109 ◽  
Author(s):  
Charles R. Ortloff

The water supply and distribution system of the Nabataean city of Petra in southwestern Jordan has been explored and mapped. Analysis of the system indicates exploitation of all possible water resources using management techniques that balance reservoir storage capacity with continuous flow pipeline systems to maintain a constant water supply throughout the year. Nabataean Petra was founded c. 300 bc; urban development progressed with later Roman administration of the city starting at ad 106; Byzantine occupation continued to the seventh century ad. Trade networks that extended throughout much of the ancient Near East and Mediterranean world intersected at Petra, and brought not only strategic and economic prominence, but also impetus to develop water resources fully to sustain demands of increasing population and city elaboration. City development was influenced by artistic, cultural and technological borrowings from Seleucid, Syro-Phoenician, Greek and Roman civilizations; the Petra water-distribution system included hydraulic technologies derived from these contacts as well as original technical innovations that helped to maintain the high living standard of city dwellers throughout the centuries. Analysis of the Nabataean water network indicates design criteria that promote stable flows and use sequential particle-settling basins to purify potable water supplies. They also promote open channel flows within piping at critical (maximum) flow rates that avoid leakage associated with pressurized systems and have the design function to match the spring supply rate to the maximum carrying capacity of a pipeline. This demonstration of engineering capability indicates a high degree of cognitive skill in solving complex hydraulic problems to ensure a stable water supply and may be posited as a key reason behind the many centuries of flourishing city life.


2015 ◽  
Vol 20 (24) ◽  
Author(s):  
B Guzman-Herrador ◽  
A Carlander ◽  
S Ethelberg ◽  
B Freiesleben de Blasio ◽  
M Kuusi ◽  
...  

A total of 175 waterborne outbreaks affecting 85,995 individuals were notified to the national outbreak surveillance systems in Denmark, Finland and Norway from 1998 to 2012, and in Sweden from 1998 to 2011. Between 4 and 18 outbreaks were reported each year during this period. Outbreaks occurred throughout the countries in all seasons, but were most common (n = 75/169, 44%) between June and August. Viruses belonging to the Caliciviridae family and Campylobacter were the pathogens most frequently involved, comprising n = 51 (41%) and n = 36 (29%) of all 123 outbreaks with known aetiology respectively. Although only a few outbreaks were caused by parasites (Giardia and/or Cryptosporidium), they accounted for the largest outbreaks reported during the study period, affecting up to 53,000 persons. Most outbreaks, 124 (76%) of those with a known water source (n = 163) were linked to groundwater. A large proportion of the outbreaks (n = 130/170, 76%) affected a small number of people (less than 100 per outbreak) and were linked to single-household water supplies. However, in 11 (6%) of the outbreaks, more than 1,000 people became ill. Although outbreaks of this size are rare, they highlight the need for increased awareness, particularly of parasites, correct water treatment regimens, and vigilant management and maintenance of the water supply and distribution systems.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1719 ◽  
Author(s):  
Seungyub Lee ◽  
Sueyeun Oak ◽  
Donghwi Jung ◽  
Hwandon Jun

Understanding the impact and duration (consequences) of different component failures (cause) in a water supply and distribution system (WSDS) is a critical task for water utilities to develop effective preparation and response plans. During the last three decades, few efforts have been devoted to developing a visualization tool to display the relationship between the failure cause and its consequences. This study proposes two visualization methods to effectively show the relationship between the two failure entities: A failure cause–impact–duration (CID) plot, and a bubble plot. The former is drawn for an effective snapshot on the range (extent) of failure duration and the impact of different failures, whereas the latter provides failure frequency information. A simple and practical failure classification system is also introduced for producing the two proposed plots effectively. To verify the visualization schemes, we collected records of 331 WSDS component failures that occurred in South Korea between 1980 and 2018. Results showed that (1) the proposed CID plot can serve as a useful tool for identifying most minor and major WSDS failures, and (2) the proposed bubble plot is useful for determining significant component failures with respect to their failure consequences and occurrence likelihoods.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3498
Author(s):  
Charles R. Ortloff

The principal water supply and distribution systems of the World Heritage site of Petra in Jordan were analyzed to bring forward water engineering details not previously known in the archaeological literature. The three main water supply pipeline systems sourced by springs and reservoirs (the Siq, Ain Braq, and Wadi Mataha pipeline systems) were analyzed for their different pipeline design philosophies that reflect different geophysical landscape challenges to provide water supplies to different parts of urban Petra. The Siq pipeline system’s unique technical design reflects use of partial flow in consecutives sections of the main pipeline to support partial critical flow in each section that reduce pipeline leakage and produce the maximum flow rate the Siq pipeline can transport. An Ain Braq pipeline branch demonstrated a new hydraulic engineering discovery not previously reported in the literature in the form of an offshoot pipeline segment leading to a water collection basin adjacent to and connected to the main water supply line. This design eliminates upstream water surges arising from downstream flow instabilities in the two steep pipelines leading to a residential sector of Petra. The Wadi Mataha pipeline system is constructed at the critical angle to support the maximum flow rate from a reservoir. The analyses presented for these water supply and distribution systems brought forward aspects of the Petra urban water supply system not previously known, revising our understanding of Nabataean water engineers’ engineering knowledge.


Sign in / Sign up

Export Citation Format

Share Document