scholarly journals Using Mycobacterium tuberculosis Single-Nucleotide Polymorphisms To Predict Fluoroquinolone Treatment Response

2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Marva Seifert ◽  
Edmund Capparelli ◽  
Donald G. Catanzaro ◽  
Timothy C. Rodwell

ABSTRACT Clinical phenotypic fluoroquinolone susceptibility testing of Mycobacterium tuberculosis is currently based on M. tuberculosis growth at a single critical concentration, which provides limited information for a nuanced clinical response. We propose using specific resistance-conferring M. tuberculosis mutations in gyrA together with population pharmacokinetic and pharmacodynamic modeling as a novel tool to better inform fluoroquinolone treatment decisions. We sequenced the gyrA resistance-determining region of 138 clinical M. tuberculosis isolates collected from India, Moldova, Philippines, and South Africa and then determined each strain’s MIC against ofloxacin, moxifloxacin, levofloxacin, and gatifloxacin. Strains with specific gyrA single-nucleotide polymorphisms (SNPs) were grouped into high or low drug-specific resistance categories based on their empirically measured MICs. Published population pharmacokinetic models were then used to explore the pharmacokinetics and pharmacodynamics of each fluoroquinolone relative to the empirical MIC distribution for each resistance category to make predictions about the likelihood of patients achieving defined therapeutic targets. In patients infected with M. tuberculosis isolates containing SNPs associated with a fluoroquinolone-specific low-level increase in MIC, models suggest increased fluoroquinolone dosing improved the probability of achieving therapeutic targets for gatifloxacin and moxifloxacin but not for levofloxacin and ofloxacin. In contrast, among patients with isolates harboring SNPs associated with a high-level increase in MIC, increased dosing of levofloxacin, moxifloxacin, gatifloxacin, or ofloxacin did not meaningfully improve the probability of therapeutic target attainment. We demonstrated that quantifiable fluoroquinolone drug resistance phenotypes could be predicted from rapidly detectable gyrA SNPs and used to support dosing decisions based on the likelihood of patients reaching therapeutic targets. Our findings provide further supporting evidence for the moxifloxacin clinical breakpoint recently established by the World Health Organization.

2013 ◽  
Vol 57 (11) ◽  
pp. 5658-5664 ◽  
Author(s):  
Soo-Jin Yang ◽  
Nagendra N. Mishra ◽  
Aileen Rubio ◽  
Arnold S. Bayer

ABSTRACTSingle nucleotide polymorphisms (SNPs) within themprFopen reading frame (ORF) have been commonly observed in daptomycin-resistant (DAPr)Staphylococcus aureusstrains. Such SNPs are usually associated with a gain-in-function phenotype, in terms of either increased synthesis or enhanced translocation (flipping) of lysyl-phosphatidylglycerol (L-PG). However, it is unclear if suchmprFSNPs are causal in DAPrstrains or are merely a biomarker for this phenotype. In this study, we used an isogenic set ofS. aureusstrains: (i) Newman, (ii) its isogenic ΔmprFmutant, and (iii) several intransplasmid complementation constructs, expressing either a wild-type or point-mutated form of themprFORF cloned from two isogenic DAP-susceptible (DAPs)-DAPrstrain pairs (616-701 and MRSA11/11-REF2145). Complementation of the ΔmprFstrain with singly point-mutatedmprFgenes (mprFS295LormprFT345A) revealed that (i) individual and distinct point mutations within themprFORF can recapitulate phenotypes observed in donor strains (i.e., changes in DAP MICs, positive surface charge, and cell membrane phospholipid profiles) and (ii) these gain-in-function SNPs (i.e., enhanced L-PG synthesis) likely promote reduced DAP binding toS. aureusby a charge repulsion mechanism. Thus, for these two DAPrstrains, the definedmprFSNPs appear to be causally related to this phenotype.


2003 ◽  
Vol 47 (4) ◽  
pp. 1241-1250 ◽  
Author(s):  
Srinivas V. Ramaswamy ◽  
Robert Reich ◽  
Shu-Jun Dou ◽  
Linda Jasperse ◽  
Xi Pan ◽  
...  

ABSTRACT Isoniazid (INH) is a central component of drug regimens used worldwide to treat tuberculosis. Previous studies have identified resistance-associated mutations in katG, inhA, kasA, ndh, and the oxyR-ahpC intergenic region. DNA microarray-based experiments have shown that INH induces several genes in Mycobacterium tuberculosis that encode proteins physiologically relevant to the drug's mode of action. To gain further insight into the molecular genetic basis of INH resistance, 20 genes implicated in INH resistance were sequenced for INH resistance-associated mutations. Thirty-eight INH-monoresistant clinical isolates and 86 INH-susceptible isolates of M. tuberculosis were obtained from the Texas Department of Health and the Houston Tuberculosis Initiative. Epidemiologic independence was established for all isolates by IS6110 restriction fragment length polymorphism analysis. Susceptible isolates were matched with resistant isolates by molecular genetic group and IS6110 profiles. Spoligotyping was done with isolates with five or fewer IS6110 copies. A major genetic group was established on the basis of the polymorphisms in katG codon 463 and gyrA codon 95. MICs were determined by the E-test. Semiquantitative catalase assays were performed with isolates with mutations in the katG gene. When the 20 genes were sequenced, it was found that 17 (44.7%) INH-resistant isolates had a single-locus, resistance-associated mutation in the katG, mabA, or Rv1772 gene. Seventeen (44.7%) INH-resistant isolates had resistance-associated mutations in two or more genes, and 76% of all INH-resistant isolates had a mutation in the katG gene. Mutations were also identified in the fadE24, Rv1592c, Rv1772, Rv0340, and iniBAC genes, recently shown by DNA-based microarray experiments to be upregulated in response to INH. In general, the MICs were higher for isolates with mutations in katG and the isolates had reduced catalase activities. The results show that a variety of single nucleotide polymorphisms in multiple genes are found exclusively in INH-resistant clinical isolates. These genes either are involved in mycolic acid biosynthesis or are overexpressed as a response to the buildup or cellular toxicity of INH.


2015 ◽  
Vol 60 (1) ◽  
pp. 387-392 ◽  
Author(s):  
Faezeh Mohammadi ◽  
Seyed Jamal Hashemi ◽  
Jan Zoll ◽  
Willem J. G. Melchers ◽  
Haleh Rafati ◽  
...  

ABSTRACTWe employed an endpoint genotyping method to update the prevalence rate of positivity for the TR34/L98H mutation (a 34-bp tandem repeat mutation in the promoter region of thecyp51Agene in combination with a substitution at codon L98) and the TR46/Y121F/T289A mutation (a 46-bp tandem repeat mutation in the promoter region of thecyp51Agene in combination with substitutions at codons Y121 and T289) among clinicalAspergillus fumigatusisolates obtained from different regions of Iran over a recent 5-year period (2010 to 2014). The antifungal activities of itraconazole, voriconazole, and posaconazole against 172 clinicalA. fumigatusisolates were investigated using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution method. For the isolates with an azole resistance phenotype, thecyp51Agene and its promoter were amplified and sequenced. In addition, using a LightCycler 480 real-time PCR system, a novel endpoint genotyping analysis method targeting single-nucleotide polymorphisms was evaluated to detect the L98H and Y121F mutations in thecyp51Agene of all isolates. Of the 172A. fumigatusisolates tested, the MIC values of itraconazole (≥16 mg/liter) and voriconazole (>4 mg/liter) were high for 6 (3.5%). Quantitative analysis of single-nucleotide polymorphisms showed the TR34/L98H mutation in thecyp51Agenes of six isolates. No isolates harboring the TR46/Y121F/T289A mutation were detected. DNA sequencing of thecyp51Agene confirmed the results of the novel endpoint genotyping method. By microsatellite typing, all of the azole-resistant isolates had genotypes different from those previously recovered from Iran and from the Dutch TR34/L98H controls. In conclusion, there was not a significant increase in the prevalence of azole-resistantA. fumigatusisolates harboring the TR34/L98H resistance mechanism among isolates recovered over a recent 5-year period (2010 to 2014) in Iran. A quantitative assay detecting a single-nucleotide polymorphism in thecyp51Agene ofA. fumigatusis a reliable tool for the rapid screening and monitoring of TR34/L98H- and TR46/Y121F/T289A-positive isolates and can easily be incorporated into clinical mycology algorithms.


PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0138253 ◽  
Author(s):  
Rose E. Jeeves ◽  
Alice A. N. Marriott ◽  
Steven T. Pullan ◽  
Kim A. Hatch ◽  
Jon C. Allnutt ◽  
...  

2020 ◽  
Vol 10 (01) ◽  
pp. 145-149
Author(s):  
Hassan Kadhim Nemir ◽  
Ismail Aziz ◽  
Alaa Kareem Mohammed

In this search, a new pyrophosphate technique was proved. The technique was employed to single- nucleotide polymorphisms (SNPs), which diagnosis using a one-base extension reaction. Three Mycobacterium tuberculosis genes were chosen (Rpob, InhA, KatG) genes. Fifty-four specimens were used in this study fifty-three proved as drug-resistant specimens by The Iraqi Institute of Chest and Respiratory Diseases in Baghdad.; also one specimen was used as a negative control. The steps of this technique were by used a specific primer within each aliquot that has a short 3-OH end of the base of the target gene that was hybridized to the single-stranded DNA template. Then, the Taq polymerase enzyme and one of either α-thio-dATP, dTTP, dGTP, or dCTP were supplemented and incubated for 1 min. ATP is synthesis by convert Pyrophosphate freed by DNA polymerase using pyruvate phosphate dikinase (PPDK), and the amount of ATP estimates by the firefly luciferase reaction. This technique, which does not demand expensive equipment, can be applied to rapidly monitor a one-point mutation in the gene that causes drug-resistant in mycobacterium tuberculosis. The results showed a high variation in values of ATP formation through matching and mismatch bases added. So, this assay (which required only five minutes), enable to find the gene SNP causes resistant for the specific drug.


2017 ◽  
Vol 83 (14) ◽  
Author(s):  
Amanda M. Williams-Rhaesa ◽  
Farris L. Poole ◽  
Jessica T. Dinsmore ◽  
Gina L. Lipscomb ◽  
Gabriel M. Rubinstein ◽  
...  

ABSTRACT Caldicellulosiruptor bescii is the most thermophilic cellulose degrader known and is of great interest because of its ability to degrade nonpretreated plant biomass. For biotechnological applications, an efficient genetic system is required to engineer it to convert plant biomass into desired products. To date, two different genetically tractable lineages of C. bescii strains have been generated. The first (JWCB005) is based on a random deletion within the pyrimidine biosynthesis genes pyrFA, and the second (MACB1018) is based on the targeted deletion of pyrE, making use of a kanamycin resistance marker. Importantly, an active insertion element, ISCbe4, was discovered in C. bescii when it disrupted the gene for lactate dehydrogenase (ldh) in strain JWCB018, constructed in the JWCB005 background. Additional instances of ISCbe4 movement in other strains of this lineage are presented herein. These observations raise concerns about the genetic stability of such strains and their use as metabolic engineering platforms. In order to investigate genome stability in engineered strains of C. bescii from the two lineages, genome sequencing and Southern blot analyses were performed. The evidence presented shows a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 elements within the genome of JWCB005, leading to massive genome rearrangements in its daughter strain, JWCB018. Such dramatic effects were not evident in the newer MACB1018 lineage, indicating that JWCB005 and its daughter strains are not suitable for metabolic engineering purposes in C. bescii. Furthermore, a facile approach for assessing genomic stability in C. bescii has been established. IMPORTANCE Caldicellulosiruptor bescii is a cellulolytic extremely thermophilic bacterium of great interest for metabolic engineering efforts geared toward lignocellulosic biofuel and bio-based chemical production. Genetic technology in C. bescii has led to the development of two uracil auxotrophic genetic background strains for metabolic engineering. We show that strains derived from the genetic background containing a random deletion in uracil biosynthesis genes (pyrFA) have a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 insertion elements in their genomes compared to the wild type. At least one daughter strain of this lineage also contains large-scale genome rearrangements that are flanked by these ISCbe4 elements. In contrast, strains developed from the second background strain developed using a targeted deletion strategy of the uracil biosynthetic gene pyrE have a stable genome structure, making them preferable for future metabolic engineering studies.


Sign in / Sign up

Export Citation Format

Share Document