scholarly journals In Vivo Efficacy of 1- and 2-Gram Human Simulated Prolonged Infusions of Doripenem against Pseudomonas aeruginosa

2009 ◽  
Vol 53 (10) ◽  
pp. 4352-4356 ◽  
Author(s):  
Jared L. Crandon ◽  
Catharine C. Bulik ◽  
David P. Nicolau

ABSTRACT Doripenem is a new carbapenem antimicrobial with activity against a range of gram-negative organisms, including Pseudomonas aeruginosa. Previous animal studies have shown efficacy of a 500-mg dose of doripenem given as a 4-h infusion against P. aeruginosa with MICs of ≤4 μg/ml. The purpose of this study is to evaluate the efficacy of 1- and 2-g-dose prolonged infusions of doripenem against a wide range of P. aeruginosa isolates in the neutropenic murine thigh model. Eighteen clinical P. aeruginosa isolates (MIC range, 2 to 32 μg/ml) were used; 15 of these were multidrug resistant. After infection, groups of mice were administered doripenem doses designed to simulate the free time above the MIC (fT>MIC) observed in humans given 1 or 2 g of doripenem every 8 h as a 4-h infusion. Efficacy correlated well with published fT>MIC bactericidal targets of 40%. After 24 h, 1- and 2-g doses achieved approximately ≥2 log decreases in CFU against isolates with MICs of ≤8 and 16 μg/ml, respectively (fT>MIC range, 52.5 to 95%). Results with organisms with higher MICs, where fT>MIC was 0%, were variable, including both increases and decreases in CFU. Compared with 1-g doses, statistically greater efficacy was noted for 2-g doses against three of the eight isolates with MICs of ≥16 μg/ml. While MIC distributions of P. aeruginosa at present necessitate increased exposures for only the most-resistant isolates, the ability of increased doses to achieve pharmacodynamic targets and the efficacy observed when these targets were attained could prove useful when these resistant isolates are encountered.

2010 ◽  
Vol 54 (10) ◽  
pp. 4112-4115 ◽  
Author(s):  
Catharine C. Bulik ◽  
David P. Nicolau

ABSTRACT Carbapenemase-producing Klebsiella pneumoniae (KPC) bacteria are rapidly becoming one of the most detrimental drug-resistant Gram-negative pathogens. Doripenem is the newest FDA-approved carbapenem that has the greatest in vitro potency against a wide range of Gram-negative organisms, including multidrug-resistant organisms. Previous work in an animal model has shown efficacy against Pseudomonas aeruginosa with MICs above the current breakpoints of susceptibility. The purpose of this study is to evaluate the efficacy of 1-g and 2-g dose prolonged infusions of doripenem against KPC isolates in both an immunocompetent and neutropenic murine thigh model. Seven clinical KPC isolates (broth microdilution [BMD] MIC range, 4 to 32 μg/ml; Etest MIC range, 3 to >32 μg/ml) were used. After infection, groups of mice were administered doripenem doses previously shown to simulate the exposures observed in humans after the administration of 1 or 2 g every 8 h as a 4-h infusion. In immunocompromised mice, 1- and 2-g doses of doripenem achieved bacteriostasis against isolates with MICs up to and including 8 μg/ml and 16 μg/ml, respectively. In immunocompetent animals, statistically significant reductions in the number of CFU were observed with overall decreases of approximately 1 log (P < 0.05). While carbapenemase-producing Klebsiella pneumoniae continues to decrease our meager supply of active agents, the ability of doripenem to produce CFU reductions in the presence of white blood cells (WBCs) using humanized exposures suggests the potential utility of this agent in combination against this increasingly problematic pathogen.


2010 ◽  
Vol 2 (01) ◽  
pp. 014-016 ◽  
Author(s):  
Madhu Sharma ◽  
Sarita Yadav ◽  
Uma Chaudhary

ABSTRACTGram-negative bacilli are important agents causing neonatal sepsis. The organisms isolated are often resistant to multiple antimicrobials specially which are metallo-beta-lactamases (MβL) producers. Therefore, the present study was conducted with the objective to examine the incidence of MβL producing strains in multidrug resistant (MDR) Pseudomonas aeruginosa from cases of neonatal sepsis. Between January-December 2006, 1994 cases of neonatal sepsis were investigated. The isolates obtained were identified and tested for susceptibility to various antimicrobial agents. The multidrug resistant P. aeruginosa isolates were screened for the presence of MβL by imipenem-EDTA disc method. Five hundred and ninety three (29.73%) isolates were obtained from culture of neonates. Most frequent offender was P. aeruginosa (48.2%). There was an overall predominance of gram-negative organisms. MβL production was seen in 69.5% of imipenem-resistant P. aeruginosa isolates. MβL producing P. aeruginosa is an emerging threat in neonatal septicemia and a cause of concern for physicians treating such infections.


2008 ◽  
Vol 52 (7) ◽  
pp. 2497-2502 ◽  
Author(s):  
Aryun Kim ◽  
Mary Anne Banevicius ◽  
David P. Nicolau

ABSTRACT Doripenem is a new broad-spectrum carbapenem with activity against a range of gram-negative pathogens, including nonfermenting bacteria such as Pseudomonas aeruginosa. The objective of this study was to evaluate simulated human exposures to doripenem using a neutropenic murine thigh infection model against 24 clinical P. aeruginosa isolates with a wide range of MICs. Dosing regimens in mice were designed to approximate the free time above MIC (fT>MIC) observed with 500 mg doripenem every 8 h given as either a 1-h or 4-h intravenous infusion in humans. Maximal antibacterial killing was associated with doripenem exposures of ≥40% fT>MIC; bacteriostatic effects were noted at ≈20% fT>MIC. The simulated 1-h infusion provided bactericidal effects for isolates with MICs of ≤2 μg/ml, while variable killing was noted for isolates with MICs of 4 to 8 μg/ml and regrowth for isolates with an MIC of 16 μg/ml. The 4-h infusion regimen displayed similar killing for isolates with MICs of ≤2 μg/ml and enhanced activity for two of the four isolates with an MIC of 4 μg/ml. Given that the 4-h regimen yields negligible fT>MIC for MICs of ≥8 μg/ml, regrowth was generally observed. Simulated doses of 500 mg doripenem every 8 h infused over 1 h demonstrated antibacterial killing for P. aeruginosa isolates with MICs of 0.125 to 8 μg/ml. Exposures of ≥40% fT>MIC resulted in the most pronounced bactericidal effects, while killing was variable for 20 to 30% fT>MIC. Infusing doses over 4 h enhanced efficacy against selected pseudomonal isolates with an MIC of 4 μg/ml.


2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Marguerite L. Monogue ◽  
Jennifer Tabor-Rennie ◽  
Kamilia Abdelraouf ◽  
David P. Nicolau

ABSTRACT We describe the in vivo efficacy of human-simulated WCK 5222 (cefepime-zidebactam) exposure against multidrug-resistant Pseudomonas aeruginosa (meropenem MICs 8 to >256 μg/ml) in a neutropenic murine thigh infection model. WCK 5222 MICs ranged from 4 to 32 μg/ml. Substantial in vivo WCK 5222 activity was observed against all isolates, further enhancing the efficacy of zidebactam alone in 11/16 isolates (WCK 5222 mean reduction, –1.62 ± 0.58 log10 CFU/thigh), and a lack of activity was observed with cefepime monotherapy.


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
Iris H. Chen ◽  
James M. Kidd ◽  
Kamilia Abdelraouf ◽  
David P. Nicolau

ABSTRACT Cefiderocol is a novel siderophore cephalosporin that utilizes bacterial ferric iron transports to cross the outer membrane. Cefiderocol shows high stability against all classes of β-lactamases, rendering it extremely potent against carbapenem- and multidrug-resistant Gram-negative organisms. Using a neutropenic murine thigh model, we compared the efficacies of human-simulated exposures of cefiderocol (20-g, 3-h infusion every 8 h [Q8H]) and ceftazidime (2-g, 2-h infusion Q8H) against Stenotrophomonas maltophilia, an emerging opportunistic Gram-negative organism associated with serious and often fatal nosocomial infections. Twenty-four S. maltophilia isolates were studied, including isolates resistant to ceftazidime, trimethoprim-sulfate, and/or levofloxacin. The thighs were inoculated with bacterial suspensions of 108 CFU/ml, and the human-simulated regimens were administered over 24 h. Efficacy was measured as the change in log10 CFU/thigh at 24 h compared to 0-h controls. Cefiderocol human-simulated exposure demonstrated potent bacterial killing; the mean bacterial reduction at 24 h was −2.67 ± 0.68 log10 CFU/thigh with ≥2-log reduction achieved in 21 isolates (87.5%) and a ≥1-log reduction achieved in the remaining 3 isolates (12.5%). In comparison, ceftazidime human-simulated exposure produced a mean bacterial reduction of −1.38 ± 1.49 log10 CFU/thigh among 10 ceftazidime-susceptible isolates and a mean bacterial growth of 0.64 ± 0.79 log10 CFU/thigh among 14 ceftazidime-nonsusceptible isolates. Although ceftazidime showed modest efficacy against most susceptible isolates, humanized cefiderocol exposures resulted in remarkable in vivo activity against all S. maltophilia isolates examined, inclusive of ceftazidime-nonsusceptible isolates. The potent in vitro and in vivo activity of cefiderocol supports the development of this novel compound for managing S. maltophilia infections.


2011 ◽  
Vol 56 (1) ◽  
pp. 544-549 ◽  
Author(s):  
Catharine C. Bulik ◽  
Pamela R. Tessier ◽  
Rebecca A. Keel ◽  
Christina A. Sutherland ◽  
David P. Nicolau

ABSTRACTCXA-101 is a novel antipseudomonal cephalosporin with enhanced activity against Gram-negative organisms displaying various resistance mechanisms. This study evaluates the efficacy of exposures approximating human percent free time above the MIC (%fT > MIC) of CXA-101 with or without tazobactam and piperacillin-tazobactam (TZP) against target Gram-negative organisms, including those expressing extended-spectrum β-lactamases (ESBLs). Sixteen clinical Gram-negative isolates (6Pseudomonas aeruginosaisolates [piperacillin-tazobactam MIC range, 8 to 64 μg/ml], 4Escherichia coliisolates (2 ESBL and 2 non-ESBL expressing), and 4Klebsiella pneumoniaeisolates (3 ESBL and 1 non-ESBL expressing) were used in an immunocompetent murine thigh infection model. After infection, groups of mice were administered doses of CXA-101 with or without tazobactam (2:1) designed to approximate the %fT > MIC observed in humans given 1 g of CXA-101 with or without tazobactam every 8 h as a 1-h infusion. As a comparison, groups of mice were administered piperacillin-tazobactam doses designed to approximate the %fT > MIC observed in humans given 4.5 g piperacillin-tazobactam every 6 h as a 30-min infusion. Predicted piperacillin-tazobactam %fT > MIC exposures of greater than 40% resulted in static to >1 log decreases in CFU in non-ESBL-expressing organisms with MICs of ≤32 μg/ml after 24 h of therapy. Predicted CXA-101 with or without tazobactam %fT > MIC exposures of ≥37.5% resulted in 1- to 3-log-unit decreases in CFU in non-ESBL-expressing organisms, with MICs of ≤16 μg/ml after 24 h of therapy. With regard to the ESBL-expressing organisms, the inhibitor combinations showed enhanced CFU decreases versus CXA-101 alone. Due to enhancedin vitropotency and resultant increasedin vivoexposure, CXA-101 produced statistically significant reductions in CFU in 9 isolates compared with piperacillin-tazobactam. The addition of tazobactam to CXA-101 produced significant reductions in CFU for 7 isolates compared with piperacillin-tazobactam. Overall, human simulated exposures of CXA-101 with or without tazobactam demonstrated improved efficacy versus piperacillin-tazobactam.


2012 ◽  
Vol 40 (6) ◽  
pp. 1549-1552 ◽  
Author(s):  
Carla L. Brown ◽  
Karen Smith ◽  
Laura McCaughey ◽  
Daniel Walker

The emergence of pan-resistant strains of Gram-negative pathogens and the ability of many bacteria to form multidrug-resistant biofilms during chronic infection poses the grave threat of bacterial infections that are truly untreatable with our current armoury of antibiotics. Despite obvious clinical need, few new antibiotics have entered clinical practice in recent years. For ‘difficult to treat’ Gram-negative bacteria such as Pseudomonas aeruginosa and Escherichia coli, where the presence of outer membrane and multidrug-efflux pumps severely limit the effectiveness of whole classes of antibiotics, the need is particularly pressing. An alternative approach to antimicrobial treatment is to use the well-characterized species-specific colicin-like bacteriocins which are produced by a wide range of Gram-negative bacteria, including Pseudomonas aeruginosa and Escherichia coli. Our current work on colicin-like bacteriocins aims to determine whether these potent antimicrobial agents are effective at killing bacteria growing in the biofilm state and during infection.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 438
Author(s):  
Jingru Shi ◽  
Chen Chen ◽  
Dejuan Wang ◽  
Ziwen Tong ◽  
Zhiqiang Wang ◽  
...  

The emergence and prevalence of multidrug-resistant (MDR) bacteria have posed a serious threat to public health. Of particular concern are methicillin-resistant Staphylococcus aureus (MRSA) and blaNDM, mcr-1 and tet(X)-positive Gram-negative pathogens. The fact that few new antibiotics have been approved in recent years exacerbates this global crisis, thus, new alternatives are urgently needed. Antimicrobial peptides (AMPs) originated from host defense peptides with a wide range of sources and multiple functions, are less prone to achieve resistance. All these characteristics laid the foundation for AMPs to become potential antibiotic candidates. In this study, we revealed that peptide WW307 displayed potent antibacterial and bactericidal activity against MDR bacteria, including MRSA and Gram-negative bacteria carrying blaNDM-5, mcr-1 or tet(X4). In addition, WW307 exhibited great biofilm inhibition and eradication activity. Safety and stability experiments showed that WW307 had a strong resistance against various physiological conditions and displayed relatively low toxicity. Mechanistic experiments showed that WW307 resulted in membrane damage by selectively targeting bacterial membrane-specific components, including lipopolysaccharide (LPS), phosphatidylglycerol (PG), and cardiolipin (CL). Moreover, WW307 dissipated membrane potential and triggered the production of reactive oxygen species (ROS). Collectively, these results demonstrated that WW307 represents a promising candidate for combating MDR pathogens.


1967 ◽  
Vol 105 (2) ◽  
pp. 759-765 ◽  
Author(s):  
K. Clarke ◽  
G. W. Gray ◽  
D. A. Reaveley

1. The insoluble residue and material present in the aqueous layers resulting from treatment of cell walls of Pseudomonas aeruginosa with aqueous phenol were examined. 2. The products (fractions AqI and AqII) isolated from the aqueous layers from the first and second extractions respectively account for approx. 25% and 12% of the cell wall and consist of both lipopolysaccharide and muropeptide. 3. The lipid part of the lipopolysaccharide is qualitatively similar to the corresponding material (lipid A) from other Gram-negative organisms, as is the polysaccharide part. 4. The insoluble residue (fraction R) contains sacculi, which also occur in fraction AqII. On hydrolysis, the sacculi yield glucosamine, muramic acid, alanine, glutamic acid and 2,6-diaminopimelic acid, together with small amounts of lysine, and they are therefore similar to the murein sacculi of other Gram-negative organisms. Fraction R also contains substantial amounts of protein, which differs from that obtained from the phenol layer. 5. The possible association or aggregation of lipopolysaccharide, murein and murein sacculi is discussed.


Sign in / Sign up

Export Citation Format

Share Document