scholarly journals In Vitro Synergy and In Vivo Activity of Tigecycline-Ciprofloxacin Combination Therapy against Vibrio vulnificus Sepsis

2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Seong Eun Kim ◽  
Hee Kyung Kim ◽  
Su-Mi Choi ◽  
Yohan Yu ◽  
Uh Jin Kim ◽  
...  

ABSTRACT The mortality rate associated with Vibrio vulnificus sepsis remains high. An in vitro time-kill assay revealed synergism between tigecycline and ciprofloxacin. The survival rate was significantly higher in mice treated with tigecycline plus ciprofloxacin than in mice treated with cefotaxime plus minocycline. Thus, combination treatment with tigecycline-ciprofloxacin may be an effective novel antibiotic regimen for V. vulnificus sepsis.

2011 ◽  
Vol 55 (6) ◽  
pp. 2755-2759 ◽  
Author(s):  
Hung-Jen Tang ◽  
Wen-Chien Ko ◽  
Chi-Chung Chen ◽  
Po-Lin Chen ◽  
Han Siong Toh ◽  
...  

ABSTRACTSalmonellais an important, worldwide food-borne pathogen. Resistance to fluoroquinolones and cephalosporins has been increasingly reported, and new therapeutic agents are desperately needed. In this study, we evaluated thein vitroantimicrobial susceptibility of clinical nontyphoidalSalmonellaisolates to tigecycline. Antibacterial activity of tigecycline, ceftriaxone, and ciprofloxacin were investigated by time-kill studies and the murine peritonitis model. The MIC50/MIC90values of tigecycline, ceftriaxone, and ciprofloxacin against 76Salmonellaisolates were 0.25/0.5, 1/8, and 0.125/0.5 μg/ml, respectively. The intracellular inhibitory activity of tigecycline at 0.5 μg/ml (1× MIC) againstSalmonellaisolates in human peripheral blood mononuclear cells was sustained for 24 h. In a mouse peritonitis model, tigecycline reduced the extracellular and intracellular bacterial counts from 107CFU/ml and 105CFU/ml, respectively, to an undetectable level within 96 h. The results were similar to those obtained with ceftriaxone. The survival rate of mice exposed to tigecycline after being infected by an inoculum of 1 × 105CFU was 80%, and that of mice exposed to ceftriaxone was 100%. When the inoculum was increased to 1.3 × 106CFU, the survival rate of mice treated by tigecycline was 20%, and that of mice exposed to ceftriaxone was 0% (P= 0.2). When a ceftriaxone- and ciprofloxacin-resistant but tigecycline-susceptible isolate was tested, mice treated by tigecycline had a higher survival rate than those treated by ceftriaxone (15/20 [75%] versus 6/20 [30%];P= 0.011). Our results suggest that tigecycline is at least as effective as ceftriaxone for murineSalmonellainfections and warrants further clinical investigations to delineate its potential against humanSalmonellainfections.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Sonya A. Trinh ◽  
Hannah E. Gavin ◽  
Karla J. F. Satchell

ABSTRACT Foodborne Vibrio vulnificus infections are associated with higher rates of sepsis and mortality than wound infections; however, antibiotic efficacy studies have not been performed in foodborne infection models. The efficacies of ceftriaxone, cefepime, doxycycline, ciprofloxacin, and combination therapy were assessed in V. vulnificus intestinal infection in mice in order to model foodborne infections. In accordance with prior studies of cefotaxime, cefepime was synergistic with doxycycline and ciprofloxacin in vitro; combination therapy significantly decreased bacterial growth, by ≥2 log10 units, from that with antibiotic monotherapy (P < 0.01). In vivo, survival rates in the ceftriaxone (50%), doxycycline (79%), and ciprofloxacin (80%) groups were significantly higher than those in the control group (0%) (P < 0.0001). Survival was significantly higher with ceftriaxone-doxycycline (91%) or ceftriaxone-ciprofloxacin (100%) therapy than with ceftriaxone (50%) (P ≤ 0.05). Survival with cefepime-doxycycline (96%) or cefepime-ciprofloxacin (90%) therapy was significantly higher than that with cefepime alone (20%) (P < 0.001). There was no difference in survival between the combination therapy groups. Thus, we conclude that combination therapy was the most effective treatment for foodborne V. vulnificus septicemia. In a septic patient with a recent ingestion of raw seafood, cefepime in combination with doxycycline or ciprofloxacin should be initiated for coverage of resistant Gram-negative organisms and V. vulnificus pending a microbiological diagnosis. Once a diagnosis of foodborne V. vulnificus septicemia is established, treatment can safely transition to ceftriaxone in combination with doxycycline or ciprofloxacin.


2019 ◽  
Vol 86 (5) ◽  
Author(s):  
Yan Guo ◽  
Xiaohong Lv ◽  
Yanling Wang ◽  
Yonglin Zhou ◽  
Na Lu ◽  
...  

ABSTRACT The emergence of the plasmid-mediated colistin resistance gene mcr-1 has led to serious multidrug-resistant (MDR) Enterobacteriaceae infections, which are a great threat to the clinic. This study aims to find an inhibitor of MCR-1 to reestablish the use of polymyxins against MDR Enterobacteriaceae infections. Here, we determined that the natural compound honokiol could enhance the efficacy of polymyxins against MDR Enterobacteriaceae infections by a checkerboard MIC assay, a time-kill assay, a combined disk test, Western blotting, molecular simulation dynamics, and mouse infection models. The MIC results indicated that honokiol can recover the sensitivity of polymyxins against MCR-1-positive Klebsiella pneumoniae and Escherichia coli (with a fractional inhibitory concentration index ranging from 0.09 ± 0.00 to 0.27 ± 0.06). Based on time-kill curve analysis, all of the tested bacteria were killed within 1 h following the combined therapy with honokiol and polymyxins. Molecular simulation dynamics results suggested that honokiol directly binds to the MCR-1 active region, reducing the biological activity of MCR-1. The combination of honokiol and polymyxins could increase the 40% protection rate and reduce the bacterial load on the thigh muscles of mice. Our study indicates that honokiol is a predominant natural compound whose combination therapy with polymyxins is very promising in future treatment options for MCR-1-positive Enterobacteriaceae infections. IMPORTANCE In the present study, honokiol could effectively inhibit the activity of MCR-1 and showed almost no cytotoxicity to MH-S cells. According to our results, the combination of honokiol and polymyxin had a clear synergistic effect against MCR-1-positive Enterobacteriaceae in vitro. Combination therapy also showed a powerful therapeutic effect in vivo, which can significantly improve mouse livability, reduced the load of bacteria, and reduced pathological change. This combined therapy of small molecule compounds and antibiotics may not continue to induce new bacterial resistance, due to the fact that MCR-1 targeted by honokiol is not indispensable for the bacterial viability; on the other hand, it can reduce the dosage of combined antibiotics, and it is also a promising alternative therapy for the treatment of drug-resistant infections in the future.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S377-S378
Author(s):  
Seong Eun Kim ◽  
Su-Mi Choi ◽  
Hee Kyung Kim ◽  
Tae Hoon Oh ◽  
Uh Jin Kim ◽  
...  

Abstract Background The mortality of Vibrio vulnificus sepsis is still high, despite the application of various antibiotic regimens. In-vivo efficacy of tigecycline against V. vulnificus has not been examined. Methods Time-kill assay was performed to evaluate the presence of in-vitro antibiotic synergism. The cytotoxicity of V. vulnificus was measured by using the lactate dehydrogenase assay, and rtxA1 toxin gene transcription was measured by β-galactosidase assay. Subcutaneous injection of V. vulnificus was performed with 1 × 108 CFU on iron-overloaded female BALB/c mouse, then intraperitoneal antibiotic therapy was initiated 2 hours after bacterial inoculation. Results In vitro time-kill assay reveals synergism between tigecycline and ciprofloxacin. Inhibitory effects of tigecycline on rtx A1 transcription (66%) and cytotoxicity (59%) were comparable to those of ciprofloxacin (64% and 53%), but superior to those of minocycline (76% and 69%) or cefotaxime (86% and 83%; P &lt; 0.05, each). Survival of tigecycline-treated mice were significantly higher than those of mice treated by current regimens (P &lt; 0.05, each; Table). At Vibrio vulnificus sepsis mice inoculating 1 × 109 CFU, survival rate for tigecycline-plus-ciprofloxacin was significantly higher than that of tigecycline (0%; 0/19) or tigecycline-plus-cefotaxime (0%; 0/19) (P &lt; 0.05, each; Table). Conclusion Tigecycline-plus-ciprofloxacin showed superior in-vivo efficacy to pre-existing regimens. Disclosures All authors: No reported disclosures.


2019 ◽  
Vol 74 (11) ◽  
pp. 3211-3216 ◽  
Author(s):  
Stephan Göttig ◽  
Denia Frank ◽  
Eleonora Mungo ◽  
Anika Nolte ◽  
Michael Hogardt ◽  
...  

Abstract Objectives The β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is active against KPC-producing Enterobacterales. Herein, we present molecular and phenotypic characterization of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae that emerged in vivo and in vitro. Methods Sequence analysis of blaKPC-3 was performed from clinical and in vitro-generated ceftazidime/avibactam-resistant K. pneumoniae isolates. Time–kill kinetics and the Galleria mellonella infection model were applied to evaluate the activity of ceftazidime/avibactam and imipenem alone and in combination. Results The ceftazidime/avibactam-resistant clinical K. pneumoniae isolate revealed the amino acid change D179Y in KPC-3. Sixteen novel mutational changes in KPC-3 among in vitro-selected ceftazidime/avibactam-resistant isolates were described. Time–kill kinetics showed the emergence of a resistant subpopulation under selection pressure with either imipenem or ceftazidime/avibactam. However, combined selection pressure with imipenem plus ceftazidime/avibactam prevented the development of resistance and resulted in bactericidal activity. Concordantly, the G. mellonella infection model revealed that monotherapy with ceftazidime/avibactam is prone to select for resistance in vivo and that combination therapy with imipenem results in significantly better survival. Conclusions Ceftazidime/avibactam is a valuable antibiotic against MDR and carbapenem-resistant Enterobacterales. Based on time–kill kinetics as well as an in vivo infection model we postulate a combination therapy of ceftazidime/avibactam and imipenem as a strategy to prevent the development of ceftazidime/avibactam resistance in KPC-producing Enterobacterales in vivo.


2014 ◽  
Vol 59 (3) ◽  
pp. 1797-1801 ◽  
Author(s):  
Ryan K. Shields ◽  
M. Hong Nguyen ◽  
Brian A. Potoski ◽  
Ellen G. Press ◽  
Liang Chen ◽  
...  

ABSTRACTTreatment failures of a carbapenem-colistin regimen among patients with bacteremia due to sequence type 258 (ST258), KPC-2-producingKlebsiella pneumoniaewere significantly more likely if both agents were inactivein vitro, as defined by a colistin MIC of >2 μg/ml and the presence of either a majorompK36porin mutation (guanine and alanine insertions at amino acids 134 and 135 [ins aa 134–135 GD], IS5promoter insertion [P= 0.007]) or a doripenem MIC of >8 μg/ml (P= 0.01). MajorompK36mutations among KPC-K. pneumoniaestrains are important determinants of carbapenem-colistin responsesin vitroandin vivo.


2012 ◽  
Vol 56 (12) ◽  
pp. 6291-6297 ◽  
Author(s):  
Azzam Saleh-Mghir ◽  
Oana Dumitrescu ◽  
Aurélien Dinh ◽  
Yassine Boutrad ◽  
Laurent Massias ◽  
...  

ABSTRACTCommunity-associated methicillin-resistantStaphylococcus aureus(CA-MRSA) can cause osteomyelitis with severe sepsis and/or local complications in which a Panton-Valentine leukocidin (PVL) role is suspected.In vitrosub-MIC antibiotic effects on growth and PVL production by 11 PVL+MRSA strains, including the major CA-MRSA clones (USA300, including the LAC strain; USA400; and USA1000), and 11 PVL+methicillin-susceptibleS. aureus(MSSA) strains were tested in microplate culture. Time-kill analyses with ceftobiprole at its MIC were also run with LAC. Efficacies of ceftobiprole (40 mg/kg of body weight subcutaneously [s.c.] four times a day [q.i.d.]) or vancomycin (60 mg/kg intramuscularly [i.m.] twice a day [b.i.d.]) alone or combined with rifampin (10 mg/kg b.i.d.) against rabbit CA-MRSA osteomyelitis, induced by tibial injection of 3.4 × 107CFU of LAC, were compared. Treatment, started 14 days postinoculation, lasted 14 days.In vitro, 6/11 strains cultured with sub-MICs of ceftobiprole produced 1.6- to 4.8-fold more PVL than did the controls, with no link to specific clones. Rifampin decreased PVL production by all tested strains. In time-kill analyses at the LAC MIC (0.75 mg/liter), PVL production rose transiently at 6 and 8 h and then declined 2-fold at 16 h, concomitant with a 2-log10-CFU-count decrease.In vivo, the mean log10CFU/g of bone for ceftobiprole (1.44 ± 0.40) was significantly lower than that for vancomycin (2.37 ± 1.22) (P= 0.034), with 7/10 versus 5/11 bones sterilized, respectively. Combination with rifampin enhanced ceftobiprole (1.16 ± 0.04 CFU/g of bone [P= 0.056], 11/11 sterile bones) and vancomycin (1.23 ± 0.06 CFU/g [P= 0.011], 11/11 sterile bones) efficacies. Ceftobiprole bactericidal activity and the rifampin anti-PVL effect could play a role in these findings, which should be of interest for treating CA-MRSA osteomyelitis.


2011 ◽  
Vol 56 (1) ◽  
pp. 202-207 ◽  
Author(s):  
Mao Hagihara ◽  
Dora E. Wiskirchen ◽  
Joseph L. Kuti ◽  
David P. Nicolau

ABSTRACTPrevious studies employing time-kill methods have observed synergistic effects against methicillin-resistantStaphylococcus aureus(MRSA) when a β-lactam is combined with vancomycin. However, these time-kill studies have neglected the importance of human-simulated exposures. We evaluated the effect of human simulated exposures of vancomycin at 1 g every 8 h (q8h) in combination with cefazolin at 1 g q8h against various MRSA isolates. Four clinical isolates (two MRSA isolates [vancomycin MICs, 0.5 and 2.0 μg/ml], a heterogeneous vancomycin-intermediateS. aureus[hVISA] isolate [MIC, 2.0 μg/ml], and a vancomycin-intermediateS. aureus[VISA] isolate [MIC, 8.0 μg/ml]) were evaluated in anin vitropharmacodynamic model with a starting inoculum of 106or 108CFU/ml. Bacterial density was measured over 48 to 72 h. Time-kill curves were constructed, and the area under the bacterial killing and regrowth curve (AUBC) was calculated. During 106CFU/ml studies, combination therapy achieved greater log10CFU/ml changes than vancomycin alone at 12 h (−4.31 ± 0.58 versus −2.80 ± 0.59,P< 0.001), but not at 48 h. Combination therapy significantly reduced the AUBC from 0 to 48 h (122 ± 14) compared with vancomycin alone (148 ± 22,P= 0.017). Similar results were observed during 108CFU/ml studies, where combination therapy achieved greater log10CFU/ml changes at 12 h than vancomycin alone (−4.00 ± 0.20 versus −1.10 ± 0.04,P< 0.001) and significantly reduced the AUBC (275 ± 30 versus 429 ± 37,P< 0.001) after 72 h of incubation. In this study, the combination of vancomycin and cefazolin at human-simulated exposures improved the rate of kill against these MRSA isolates and resulted in greater overall antibacterial effect, but no differences in bacterial density were observed by the end of the experiments.


2016 ◽  
Vol 60 (5) ◽  
pp. 3001-3006 ◽  
Author(s):  
Akihiro Morinaka ◽  
Yuko Tsutsumi ◽  
Keiko Yamada ◽  
Yoshihiro Takayama ◽  
Shiro Sakakibara ◽  
...  

ABSTRACTGram-negative bacteria are evolving to produce β-lactamases of increasing diversity that challenge antimicrobial chemotherapy. OP0595 is a new diazabicyclooctane serine β-lactamase inhibitor which acts also as an antibiotic and as a β-lactamase-independent β-lactam “enhancer” againstEnterobacteriaceae. Here we determined the optimal concentration of OP0595 in combination with piperacillin, cefepime, and meropenem, in addition to the antibacterial activity of OP0595 alone and in combination with cefepime, inin vitrotime-kill studies and anin vivoinfection model against five strains of CTX-M-15-positiveEscherichia coliand five strains of KPC-positiveKlebsiella pneumoniae. An OP0595 concentration of 4 μg/ml was found to be sufficient for an effective combination with all three β-lactam agents. In bothin vitrotime-kill studies and anin vivomodel of infection, cefepime-OP0595 showed stronger efficacy than cefepime alone against all β-lactamase-positive strains tested, whereas OP0595 alone showed weaker or no efficacy. Taken together, these data indicate that combinational use of OP0595 and a β-lactam agent is important to exert the antimicrobial functions of OP0595.


2019 ◽  
Author(s):  
Ryuichiro Abe ◽  
Hideharu Hagiya ◽  
Yukihiro Akeda ◽  
Norihisa Yamamoto ◽  
Yoshikazu Ishii ◽  
...  

Abstract Objective: Carbapenem-resistant Enterobacteriaceae (CRE) are among the most severe threats to public and clinical health because of their high levels of resistance to various antibiotics. We assessed the efficacy of combination therapy with meropenem (MEM) and cefmetazole (CMZ) against Imipenemase (IMP)-producing CRE, using the checkerboard method and time-killing assay on 13 Enterobacteriaceae isolates harboring blaIMP-1 (4 Enterobacter hormaechei, 5 Escherichia coli, and 4 Klebsiella pneumoniae isolates) and 13 isolates harboring blaIMP-6 (8 E. coli and 5 K. pneumoniae isolates). Results: Minimum inhibitory concentrations (MICs) of MEM and CMZ ranged from 2 to 64 and 64 to 2048 μg/mL, respectively. Checkerboard method demonstrated the synergy of the MEM/CMZ combination in all the tested IMP-producing CRE isolates, and the time-kill assay indicated a bactericidal effect for both blaIMP-1 and blaIMP-6 positive CRE when MEM/CMZ combination was used. In vitro, the MEM/CMZ combination was potentially effective against IMP-1- or IMP-6-producing CRE. Further investigations including in vivo animal studies and clinical studies are warranted to corroborate the clinical utility of the novel combination therapy.


Sign in / Sign up

Export Citation Format

Share Document