scholarly journals Bactericidal Efficacy of Meropenem in Combination with Cefmetazole against IMP-producing Carbapenem-Resistant Enterobacteriaceae

2019 ◽  
Author(s):  
Ryuichiro Abe ◽  
Hideharu Hagiya ◽  
Yukihiro Akeda ◽  
Norihisa Yamamoto ◽  
Yoshikazu Ishii ◽  
...  

Abstract Objective: Carbapenem-resistant Enterobacteriaceae (CRE) are among the most severe threats to public and clinical health because of their high levels of resistance to various antibiotics. We assessed the efficacy of combination therapy with meropenem (MEM) and cefmetazole (CMZ) against Imipenemase (IMP)-producing CRE, using the checkerboard method and time-killing assay on 13 Enterobacteriaceae isolates harboring blaIMP-1 (4 Enterobacter hormaechei, 5 Escherichia coli, and 4 Klebsiella pneumoniae isolates) and 13 isolates harboring blaIMP-6 (8 E. coli and 5 K. pneumoniae isolates). Results: Minimum inhibitory concentrations (MICs) of MEM and CMZ ranged from 2 to 64 and 64 to 2048 μg/mL, respectively. Checkerboard method demonstrated the synergy of the MEM/CMZ combination in all the tested IMP-producing CRE isolates, and the time-kill assay indicated a bactericidal effect for both blaIMP-1 and blaIMP-6 positive CRE when MEM/CMZ combination was used. In vitro, the MEM/CMZ combination was potentially effective against IMP-1- or IMP-6-producing CRE. Further investigations including in vivo animal studies and clinical studies are warranted to corroborate the clinical utility of the novel combination therapy.

2019 ◽  
Author(s):  
Ryuichiro Abe ◽  
Hideharu Hagiya ◽  
Yukihiro Akeda ◽  
Norihisa Yamamoto ◽  
Yoshikazu Ishii ◽  
...  

Abstract Objective: Carbapenem-resistant Enterobacteriaceae (CRE) are among the most severe threats to public and clinical health because of their high levels of resistance to various antibiotics. We assessed the efficacy of combination therapy with meropenem (MEM) and cefmetazole (CMZ) against IMP-producing CRE, using the checkerboard method and time-killing assay on 13 Enterobacteriaceae isolates harboring blaIMP-1 (4 Enterobacter hormaechei, 5 Escherichia coli, and 4 Klebsiella pneumoniae isolates) and 13 isolates harboring blaIMP-6 (8 E. coli and 5 K. pneumoniae isolates). Results: Minimum inhibitory concentrations (MICs) of MEM and CMZ ranged from 2 to 64 and 64 to 2048 μg/mL, respectively. Checkerboard method demonstrated the synergy of the MEM/CMZ combination in all the tested IMP-producing CRE isolates, and the time-kill assay indicated a bactericidal effect for both blaIMP-1 and blaIMP-6 positive CRE when MEM/CMZ combination was used. In vitro, the MEM/CMZ combination was potentially effective against IMP-1- or IMP-6-producing CRE. Further investigations including in vivo animal studies and clinical studies are warranted to corroborate the clinical utility of the novel combination therapy.


2019 ◽  
Author(s):  
Ryuichiro Abe ◽  
Hideharu Hagiya ◽  
Yukihiro Akeda ◽  
Norihisa Yamamoto ◽  
Yoshikazu Ishii ◽  
...  

Abstract Objective: Carbapenem-resistant Enterobacteriaceae (CRE) are among the most severe threats to public and clinical health because of their high levels of resistance to various antibiotics. We assessed the efficacy of combination therapy with meropenem (MEM) and cefmetazole (CMZ) against Imipenemase (IMP)-producing CRE, using the checkerboard method and time-killing assay on 13 Enterobacteriaceae isolates harboring blaIMP-1 (4 Enterobacter hormaechei, 5 Escherichia coli, and 4 Klebsiella pneumoniae isolates) and 13 isolates harboring blaIMP-6 (8 E. coli and 5 K. pneumoniae isolates). Results: Minimum inhibitory concentrations (MICs) of MEM and CMZ ranged from 2 to 64 and 64 to 2048 μg/mL, respectively. Checkerboard method demonstrated the synergy of the MEM/CMZ combination in all the tested IMP-producing CRE isolates, and the time-kill assay indicated a bactericidal effect for both blaIMP-1 and blaIMP-6 positive CRE when MEM/CMZ combination was used. In vitro, the MEM/CMZ combination was potentially effective against IMP-1- or IMP-6-producing CRE. Further investigations including in vivo animal studies and clinical studies are warranted to corroborate the clinical utility of the novel combination therapy.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryuichiro Abe ◽  
Hideharu Hagiya ◽  
Yukihiro Akeda ◽  
Norihisa Yamamoto ◽  
Yoshikazu Ishii ◽  
...  

Abstract Objective Carbapenem-resistant Enterobacteriaceae (CRE) are among the most severe threats to public and clinical health because of their high levels of resistance to various antibiotics. We assessed the efficacy of combination therapy with meropenem (MEM) and cefmetazole (CMZ) against Imipenemase (IMP)-producing CRE, using the checkerboard method and time-killing assay on 13 Enterobacteriaceae isolates harboring blaIMP-1 (4 Enterobacter hormaechei, 5 Escherichia coli, and 4 Klebsiella pneumoniae isolates) and 13 isolates harboring blaIMP-6 (8 E. coli and 5 K. pneumoniae isolates). Results Minimum inhibitory concentrations (MICs) of MEM and CMZ ranged from 2 to 64 and 64 to 2048 μg/mL, respectively. Checkerboard method demonstrated the synergy of the MEM/CMZ combination in all the tested IMP-producing CRE isolates, and the time-kill assay indicated a bactericidal effect for both blaIMP-1 and blaIMP-6 positive CRE when MEM/CMZ combination was used. In vitro, the MEM/CMZ combination was potentially effective against IMP-1- or IMP-6-producing CRE. Further investigations including in vivo animal studies and clinical studies are warranted to corroborate the clinical utility of the novel combination therapy.


2019 ◽  
Vol 74 (11) ◽  
pp. 3211-3216 ◽  
Author(s):  
Stephan Göttig ◽  
Denia Frank ◽  
Eleonora Mungo ◽  
Anika Nolte ◽  
Michael Hogardt ◽  
...  

Abstract Objectives The β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is active against KPC-producing Enterobacterales. Herein, we present molecular and phenotypic characterization of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae that emerged in vivo and in vitro. Methods Sequence analysis of blaKPC-3 was performed from clinical and in vitro-generated ceftazidime/avibactam-resistant K. pneumoniae isolates. Time–kill kinetics and the Galleria mellonella infection model were applied to evaluate the activity of ceftazidime/avibactam and imipenem alone and in combination. Results The ceftazidime/avibactam-resistant clinical K. pneumoniae isolate revealed the amino acid change D179Y in KPC-3. Sixteen novel mutational changes in KPC-3 among in vitro-selected ceftazidime/avibactam-resistant isolates were described. Time–kill kinetics showed the emergence of a resistant subpopulation under selection pressure with either imipenem or ceftazidime/avibactam. However, combined selection pressure with imipenem plus ceftazidime/avibactam prevented the development of resistance and resulted in bactericidal activity. Concordantly, the G. mellonella infection model revealed that monotherapy with ceftazidime/avibactam is prone to select for resistance in vivo and that combination therapy with imipenem results in significantly better survival. Conclusions Ceftazidime/avibactam is a valuable antibiotic against MDR and carbapenem-resistant Enterobacterales. Based on time–kill kinetics as well as an in vivo infection model we postulate a combination therapy of ceftazidime/avibactam and imipenem as a strategy to prevent the development of ceftazidime/avibactam resistance in KPC-producing Enterobacterales in vivo.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Seong Eun Kim ◽  
Hee Kyung Kim ◽  
Su-Mi Choi ◽  
Yohan Yu ◽  
Uh Jin Kim ◽  
...  

ABSTRACT The mortality rate associated with Vibrio vulnificus sepsis remains high. An in vitro time-kill assay revealed synergism between tigecycline and ciprofloxacin. The survival rate was significantly higher in mice treated with tigecycline plus ciprofloxacin than in mice treated with cefotaxime plus minocycline. Thus, combination treatment with tigecycline-ciprofloxacin may be an effective novel antibiotic regimen for V. vulnificus sepsis.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Yun Cai ◽  
Jin Wang ◽  
Xu Liu ◽  
Rui Wang ◽  
Lei Xia

Single antimicrobial therapy has been unable to resist the global spread of bacterial resistance. Literatures of availablein vitroandin vivostudies were reviewed and the results showed that low frequency ultrasound (LFU) has a promising synergistic bactericidal effect with antibiotics against both planktonic and biofilm bacteria. It also can facilitate the release of antibiotics from medical implants. As a noninvasive and targeted therapy, LFU has great potential in treating bacterial infections. However, more in-depth and detailed studies are still needed before LFU is officially applied as a combination therapy in the field of anti-infective treatment.


2020 ◽  
Vol 8 (10) ◽  
pp. 1489
Author(s):  
Yiying Cai ◽  
Jonathan J. Ng ◽  
Hui Leck ◽  
Jocelyn Q. Teo ◽  
Jia-Xuan Goh ◽  
...  

Traditional in vitro time-kill studies (TKSs) require viable plating, which is tedious and time-consuming. We used ATP bioluminescence, with the removal of extracellular ATP (EC-ATP), as a surrogate for viable plating in TKSs against carbapenem-resistant Gram-negative bacteria (CR-GNB). Twenty-four-hour TKSs were conducted using eight clinical CR-GNB (two Escherichia coli, two Klebsiella spp., two Acinetobacter baumannii, two Pseudomonas aeruginosa) with multiple single and two-antibiotic combinations. ATP bioluminescence and viable counts were determined at each timepoint (0, 2, 4, 8, 24 h), with and without apyrase treatment. Correlation between ATP bioluminescence and viable counts was determined for apyrase-treated and non-apyrase-treated samples. Receiver operator characteristic curves were plotted to determine the optimal luminescence threshold to discriminate between inhibitory/non-inhibitory and bactericidal/non-bactericidal combinations, compared to viable counts. After treatment of bacteria with 2 U/mL apyrase for 15 min at 37 °C, correlation to viable counts was significantly higher compared to untreated samples (p < 0.01). Predictive accuracies of ATP bioluminescence were also significantly higher for apyrase-treated samples in distinguishing inhibitory (p < 0.01) and bactericidal (p = 0.03) combinations against CR-GNB compared to untreated samples, when all species were collectively analyzed. We found that ATP bioluminescence can potentially replace viable plating in TKS. Our assay also has applications in in vitro and in vivo infection models.


2021 ◽  
Vol 14 (8) ◽  
pp. 823
Author(s):  
Tsung-Ying Yang ◽  
Sung-Pin Tseng ◽  
Heather Nokulunga Dlamini ◽  
Po-Liang Lu ◽  
Lin Lin ◽  
...  

The increasing trend of carbapenem-resistant Acinetobacter baumannii (CRAB) worldwide has become a concern, limiting therapeutic alternatives and increasing morbidity and mortality rates. The immunomodulation agent ammonium trichloro (dioxoethylene-O,O′-) tellurate (AS101) was repurposed as an antimicrobial agent against CRAB. Between 2016 and 2018, 27 CRAB clinical isolates were collected in Taiwan. The in vitro antibacterial activities of AS101 were evaluated using broth microdilution, time-kill assay, reactive oxygen species (ROS) detection and electron microscopy. In vivo effectiveness was assessed using a sepsis mouse infection model. The MIC range of AS101 for 27 CRAB isolates was from 0.5 to 32 µg/mL, which is below its 50% cytotoxicity (approximately 150 µg/mL). Bactericidal activity was confirmed using a time-kill assay. The antibacterial mechanism of AS101 was the accumulation of the ROS and the disruption of the cell membrane, which, in turn, results in cell death. The carbapenemase-producing A. baumannii mouse sepsis model showed that AS101 was a better therapeutic effect than colistin. The mice survival rate after 120 h was 33% (4/12) in the colistin-treated group and 58% (7/12) in the high-dose AS101 (3.33 mg/kg/day) group. Furthermore, high-dose AS101 significantly decreased bacterial population in the liver, kidney and spleen (all p < 0.001). These findings support the concept that AS101 is an ideal candidate for further testing in future studies.


2019 ◽  
Vol 63 (3) ◽  
Author(s):  
William R. Wilson ◽  
Ellen G. Kline ◽  
Chelsea E. Jones ◽  
Kristin T. Morder ◽  
Roberta T. Mettus ◽  
...  

ABSTRACT Meropenem-vaborbactam is a new agent with the potential to treat carbapenem-resistant Enterobacteriaceae (CRE) infections. We describe the in vitro activity of meropenem-vaborbactam against representative CRE genotypes and laboratory-engineered Escherichia coli isolates harboring mutant blaKPC genes associated with ceftazidime-avibactam resistance. We also compared disk diffusion and gradient strip testing methods to standard broth microdilution methods. Against 120 CRE isolates, median ceftazidime-avibactam and meropenem-vaborbactam MICs were 1 and 0.03 µg/ml, respectively. Ninety-eight percent (117/120) of isolates were susceptible to meropenem-vaborbactam (MICs ≤ 4 µg/ml). Against Klebsiella pneumoniae isolates harboring mutant blaKPC, the addition of vaborbactam lowered the meropenem MICs in 78% of isolates (14/18); 100% were susceptible to meropenem-vaborbactam. Median meropenem-vaborbactam MICs were higher against K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae isolates with mutant ompK36 porin genes (n = 26) than against those with wild-type ompK36 porin genes (n = 54) (0.25 versus 0.03 µg/ml; P < 0.0001). Against E. coli TOP10 isolates with plasmid constructs containing wild-type blaKPC or mutant blaKPC, the addition of vaborbactam at 8 µg/ml lowered the meropenem MICs 2- to 512-fold, resulting in meropenem-vaborbactam MICs of 0.03 µg/ml. The rates of categorical agreement with broth microdilution for disk diffusion or gradient strips ranged from 90 to 95%. Essential agreement rates were higher for research-use-only (RUO) gradient strips manufactured by bioMérieux (82%) than for those manufactured by Liofilchem (48%) (P < 0.0001). Taken together, our data highlight the potent in vitro activity of meropenem-vaborbactam against CRE, including isolates resistant to ceftazidime-avibactam. Vaborbactam inhibited both wild-type and variant KPC enzymes. On the other hand, KPC-producing K. pneumoniae isolates with ompK36 mutations displayed higher meropenem-vaborbactam MICs than isolates with wild-type ompK36. The results of susceptibility testing with RUO bioMérieux gradient strips most closely aligned with those of broth microdilution methods.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S722-S723
Author(s):  
Nour Ismail ◽  
Hazem Albashash ◽  
Mahesh J Thalavitiya Acharige ◽  
Mohamad Hejazi ◽  
Carmen Leon Astudillo ◽  
...  

Abstract Background CRE infections cause significant mortality, in large part because rapid identification of these infections is challenging. We tested the hypothesis that CRE and their isogenic carbapenem-susceptible counterparts have differential metabolic responses to carbapenem therapy. Methods We generated isogenic pairs of E. coli, E. cloacae, and K. pneumoniae by inserting a blaNDM-1-containing plasmid into carbapenem-susceptible E. coli, E. cloacae, and K. pneumoniae. We confirmed phenotypic meropenem (MPM) resistance per CLSI breakpoints for Enterobacteriaceae (MIC ≥4) in the NDM-1+ member and susceptibility (MIC≤1) in the NDM-1- member of each pair. We administered 2 × 108 CFU of each isolate intranasally to 23–28 g male C57BL/6J mice, infecting 6 mice with the NDM-1+ member and 6 with the NDM-1− member of each species pair (12 mice per bacterial species). 24 hours after infection, we treated 3 mice in each NDM-1+ and NDM-1− bacterial species cohort with MPM over 4 hours, and the other 3 mice in each cohort with saline over 4 hours as controls, confirming adequate infection (a target of 106 CFU/g of lung tissue) in quantitative lung homogenate cultures. We then collected breath samples from each mouse via tracheostomy using a murine ventilator, identifying all volatile metabolites in each sample using thermal desorption-gas chromatography/tandem mass spectrometry. We used Wilcoxon tests to examine differences in metabolite abundance between MPM and saline-treated control mice in the NDM-1+ and NDM-1− a member of each species pair, with a two-sided P-value threshold of < 0.1. Results Several breath volatile metabolites changed differentially within each NDM-1+/NDM-1- pair, outlined in Table 1 (E. coli), Table 2 (E. cloacae), and Table 3 (K. pneumoniae). Each listed metabolite that changed with MPM did not change with MPM in mice infected with each isogenic counterpart Conclusion There are differential in vivo metabolic responses with effective vs. ineffective treatment of mice with pneumonia caused by E. coli, E. cloacae, and K. pneumoniae pairs that are genetically identical other than blaNDM-1; this differential treatment response can potentially be used to identify these infections. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document