scholarly journals Antifungal Effects on Metabolite Profiles of Medically Important Yeast Species Measured by Nuclear Magnetic Resonance Spectroscopy

2006 ◽  
Vol 50 (12) ◽  
pp. 4018-4026 ◽  
Author(s):  
Muireann Coen ◽  
Jennifer Bodkin ◽  
Damla Power ◽  
William A. Bubb ◽  
Uwe Himmelreich ◽  
...  

ABSTRACT Drug-induced inhibition of fungal growth is used in the diagnostic laboratory to predict therapeutic efficacy but is relatively slow, and determination of endpoints can be problematic. Nuclear magnetic resonance (NMR) spectroscopy identifies the metabolic complement of microorganisms while monitoring utilization of constituents of the incubation medium. This technique may provide a rapid and objective indicator of antifungal effects. We evaluated the effects of caspofungin, amphotericin B (AMB), and voriconazole on metabolic profiles of yeast species cultured in RPMI-2% glucose-morpholinepropanesulfonic acid buffer in microtiter plates in a proof-of-principle study. 1H NMR spectra were obtained using Bruker NMR spectrometers at 1H frequencies of 600 and 360 MHz. Metabolites were identified by two-dimensional correlation NMR spectra, and relative peak integrals were calculated from one-dimensional 1H NMR spectra. MICs were determined by a modification of the Clinical and Laboratory Standards Institute broth microdilution method M27-A. Utilization of glucose and branched-chain and aromatic amino acid substrates was accompanied by fungal production of acetate, acetaldehyde, ethanol, formate, fumarate, glycerol, lactate, pyruvate, and succinate. Clear-cut metabolic endpoints indicating a greater than 50% reduction in substrate utilization and fungal metabolite production which correlated with MICs were noted at 16 and 24 h for all three drugs. At 8 h, reductions of greater than 50% for selected metabolites were noted for caspofungin and AMB. Direct NMR-based observation of metabolic alterations in yeast cultures reveals changes in key metabolic pathways and should be evaluated formally as a rapid technique for determining susceptibility to antifungal drugs.

2007 ◽  
Vol 51 (11) ◽  
pp. 4077-4084 ◽  
Author(s):  
R. Plummer ◽  
J. Bodkin ◽  
D. Power ◽  
N. Pantarat ◽  
W. A. Bubb ◽  
...  

ABSTRACT Invasive aspergillosis remains a potentially life-threatening infection, the incidence of which is increasing. Current methods used to determine the susceptibilities of Aspergillus strains to antifungal drugs are often unreliable. Nuclear magnetic resonance (NMR) spectroscopy can identify the metabolic complement of microorganisms while monitoring nutrient utilization from the incubation medium. We used 600-MHz 1H NMR spectroscopy to monitor the metabolic responses of five Aspergillus species cultured in RPMI 1640-2% glucose-morpholinepropanesulfonate buffer to various concentrations of the antifungal drugs amphotericin B (AMB) and caspofungin. The metabolic endpoint (MEP) was determined from nutrient and metabolite resonances, measured as a function of the drug concentration, and was defined as a ≥50% reduction in nutrient consumption or metabolite production. MICs were evaluated by a modification of Clinical and Laboratory Standards Institute broth microdilution method M27-A, and minimal effective concentrations (MECs) were determined by microscopic examination of fungal hyphae. For AMB, the MEPs coincided with the MICs. For caspofungin, the MEPs agreed with the MECs for several Aspergillus strains, but the effect of drug pressure was more complex for others. Expansion of the MEP definition to include any significant changes in metabolite production resulted in agreement with the MEC in most cases. Paradoxical metabolic responses were observed for several Aspergillus strains at either high or low caspofungin concentrations and for one Aspergillus terreus strain with AMB. NMR spectroscopy proved to be a powerful tool for detecting the subtle effects of drug pressure on fungal metabolism and has the potential to provide an alternative method for determining the susceptibilities of Aspergillus species to antifungal drugs.


2003 ◽  
Vol 69 (8) ◽  
pp. 4566-4574 ◽  
Author(s):  
Uwe Himmelreich ◽  
Ray L. Somorjai ◽  
Brion Dolenko ◽  
Ok Cha Lee ◽  
Heide-Marie Daniel ◽  
...  

ABSTRACT Nuclear magnetic resonance (NMR) spectra were acquired from suspensions of clinically important yeast species of the genus Candida to characterize the relationship between metabolite profiles and species identification. Major metabolites were identified by using two-dimensional correlation NMR spectroscopy. One-dimensional proton NMR spectra were analyzed by using a staged statistical classification strategy. Analysis of NMR spectra from 442 isolates of Candida albicans, C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis resulted in rapid, accurate identification when compared with conventional and DNA-based identification. Spectral regions used for the classification of the five yeast species revealed species-specific differences in relative amounts of lipids, trehalose, polyols, and other metabolites. Isolates of C. parapsilosis and C. glabrata with unusual PCR fingerprinting patterns also generated atypical NMR spectra, suggesting the possibility of intraspecies discontinuity. We conclude that NMR spectroscopy combined with a statistical classification strategy is a rapid, nondestructive, and potentially valuable method for identification and chemotaxonomic characterization that may be broadly applicable to fungi and other microorganisms.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S160-S160
Author(s):  
S Notararigo ◽  
M Martin-Pastor ◽  
J E Dominguez Munoz ◽  
M Barreiro-de Acosta

Abstract Background The deregulation of immune system cell response implies loss of T-cell apoptosis, high rate of proinflammatory cytokines production and subsequent exacerbate activation of TNF-α pathway. The use of biologic antibody decrease inflammation rate and symptoms, but it remains unclear if it has a direct effect on the pathways activation/inactivation on peripheral blood mononuclear cells (PBMCs). The aim of this study is evaluate the role of nuclear magnetic resonance spectroscopy (NMR) applied to the metabolomic study of serum samples isolated from fresh blood from inflammatory bowel disease (IBD) patients under IFX treatment to understand the activated/inactivated pathways of PBMCs. Methods A case–control study was performed. Inclusion criteria were IBD patients under IFX treatment. Blood samples were obtained in Crohn’s disease (CD) and ulcerative colitis (UC) patients before IFX and in healthy controls (CTRL). CD patients were divided into subgroups according to the gut affected, in Ileocolic (IC), ileum and colon. NMR samples of the serum were collected and measured according to Standard Operation Procedures. Three types of NMR spectra were measured for each serum sample (1Hnoepresat, 1Hcpmgpresat and 1HDfilterpresat). The signal in each NMR spectrum was integrated in a series of equidistant little portion of the spectrum called buckets of a constant width of 0.04 ppm, covering the complete 1H NMR spectral window from −5 to 14 ppm. Buckets in regions depleted from signal at the two extremes of the spectrum were discarded as well as those in the proximity of the water peak at ca. 4.7 ppm which was affected by the presaturation. The vectors corresponding to a number of samples of two or more groups can be rapidly analysed using Multivariant Statistical Analysis methods. Results Twenty-two IBD patients (12 CD and nine UC) were included, 10 CTRL were also included. The metabolomic analyses of the NMR spectra of the serum of the different patients and control groups by the fingerprinting and targeting profiling strategies provided OPLS-DA statistical models (Figure 1) that permitted the successful classification of certain groups of samples which are summarised in Table 1. Conclusion The results of this pilot NMR metabolomic study of serum samples of IBD found a series of spectral fingerprints that are able to discriminate between groups of patients CTRL and CD, which underlines its potential use for the diagnosis of the disease.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Chuanjiang Li ◽  
Hui Wang ◽  
Manuel Juárez ◽  
Eric Dongliang Ruan

Maillard reaction is a nonenzymatic reaction between reducing sugars and free amino acid moieties, which is known as one of the most important modifications in food science. It is essential to characterize the structure of Amadori rearrangement products (ARPs) formed in the early stage of Maillard reaction. In the present study, the Nα-acetyl-lysine-glucose model had been successfully set up to produce ARP, Nα-acetyl-lysine-glucose. After HPLC purification, ARP had been identified by ESI-MS with intense [M+H]+ ion at 351 m/z and the purity of ARP was confirmed to be over 90% by the relative intensity of [M+H]+ ion. Further structural characterization of the ARP was accomplished by using nuclear magnetic resonance (NMR) spectroscopy, including 1D 1H NMR and 13C NMR, the distortionless enhancement by polarization transfer (DEPT-135) and 2D 1H-1H and 13C-1H correlation spectroscopy (COSY) and 2D nuclear overhauser enhancement spectroscopy (NOESY). The complexity of 1D 1H NMR and 13C NMR was observed due to the presence of isomers in glucose moiety of ARP. However, DEPT-135 and 2D NMR techniques provided more structural information to assign the 1H and 13C resonances of ARP. 2D NOESY had successfully confirmed the glycosylated site between 10-N in Nα-acetyl-lysine and 7′-C in glucose.


2020 ◽  
Vol 100 (4) ◽  
pp. 60-74
Author(s):  
А.А. Bakibaev ◽  
◽  
М.Zh. Sadvakassova ◽  
V.S. Malkov ◽  
R.Sh. Еrkasov ◽  
...  

A wide variety of acyclic ureas comprising alkyl, arylalkyl, acyl, and aryl functional groups are investigated by nuclear magnetic resonance spectroscopy. In general, spectral characteristics of more than 130 substances based on acyclic ureas dissolved in deuterated dimethyl sulfoxide at room temperature are studied. The re-sults obtained based on the studies of 1H and 13C NMR spectra of urea and its N-alkyl-, N-arylalkyl-, N-aryl- and 1,3-diaryl derivatives are presented, and the effect of these functional groups on the chemical shifts in carbonyl and amide moieties in acyclic urea derivatives is discussed. An introduction of any type of substitu-ent (electron-withdrawing or electron-donating) into urea molecule is stated to result in a strong upfield shift in 13C NMR spectra relatively to unsubstituted urea. A strong sensitivity of NH protons to the presence of acyl and aryl groups in nuclear magnetic resonance spectra is pointed out. In some cases, qualitative depend-encies between the chemical shifts in the NMR spectra and the structure of the studied acyclic ureas are re-vealed. A summary of the results on chemical shifts in the NMR spectra of the investigated substances allows determining the ranges of chemical shift variations of the key protons and carbon atoms in acyclic ureas. The literature describing the synthesis procedures are provided. The results obtained significantly expand the methods of reliable identification of biologically active acyclic ureas and their metabolites that makes it promising to use NMR spectroscopy both in biochemistry and in clinical practice.


1997 ◽  
Vol 51 (5) ◽  
pp. 733-737 ◽  
Author(s):  
Markku Mesilaakso ◽  
Eeva-Liisa Tolppa ◽  
Paula Nousiainen

The 1H and 13C{1H} nuclear magnetic resonance (NMR) spectra of diphenylchloroarsine, diphenylcyanoarsine, and 10-chloro-5,10-dihydrophenarsazine were recorded from samples prepared in CDCl3, CD2Cl2, and (CD3)2CO. Spectra were analyzed, and detailed 1H NMR spectral parameters were determined by iterative analysis. Simulation of spectra and their use as reference spectra for identification of the compounds under different conditions are discussed.


2013 ◽  
Vol 20 (5) ◽  
pp. 558-565 ◽  
Author(s):  
F-M Moussallieh ◽  
K Elbayed ◽  
JB Chanson ◽  
G Rudolf ◽  
M Piotto ◽  
...  

Background:Neuromyelitis optica (NMO) and multiple sclerosis (MS), two inflammatory demyelinating diseases, are characterized by different therapeutic strategies. Currently, the only biological diagnostic tool available to distinguish NMO from MS is the specific serum autoantibody that targets aquaporin 4, but its sensitivity is low.Objective:To assess the diagnostic accuracy of metabolomic biomarker profiles in these two neurological conditions, compared to control patients.Methods:We acquired serum spectra (47 MS, 44 NMO and 42 controls) using proton nuclear magnetic resonance (1H-NMR) spectroscopy. We used multivariate pattern recognition analysis to identify disease-specific metabolic profiles.Results:The1H-NMR spectroscopic analysis evidenced two metabolites, originating probably from astrocytes, scyllo-inositol and acetate, as promising serum biomarkers of MS and NMO, respectively. In 87.8% of MS patients, scyllo-inositol increased 0.15 to 3-fold, compared to controls and in 74.3% of NMO patients, acetate increased 0.4 to 7-fold, compared to controls. Using these two metabolites simultaneously, we can discriminate MS versus NMO patients (sensitivity, 94.3%; specificity, 90.2%).Conclusion:This study demonstrates the potential of1H-NMR spectroscopy of serum as a novel, promising analytical tool to discriminate populations of patients affected by NMO or MS.


HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 980-983 ◽  
Author(s):  
V.M. Russo ◽  
J. Williamson ◽  
K. Roberts ◽  
J.R. Wright ◽  
N. Maness

Sugars move through stalks to be deposited in kernels in sweet corn (Zea mays L.). Concentrations of sugars in stalks change as plants pass through developmental stages. To follow such changes, carbon-13 nuclear magnetic resonance spectroscopy (C-nmr), a technology that can measure concentrations of sugars in tissues, was compared with analysis by high-performance liquid chromatography (HPLC). A shrunken-2 hybrid (cv. Illini Gold), was monitored from mid-whorl to fresh-market maturity (R3). Internodes near the base of the stalk, just below the ear, and between an ear and the tassel were sampled at each developmental stage. Chemical shifts in C-nmr spectra were measured in parts per million hertz (ppm) down-field relative to tetramethyl silane. Through silk emergence (R1) C-nmr spectra were similar regardless of internode, having line positions between 60 and 105 ppm. Unique lines for glucose, fructose, and sucrose were at 96, 98, and 104 ppm, respectively, and mole fractions were similar to those determined by HPLC. The highest concentrations were recorded at R1 for sucrose (26.1 mg·mL-1), from tasseling (VT) through R3 for fructose (avg. 30.4 mg·mL-1), and from VT to R1 for glucose (avg. 32 mg·mL-1). Carbon-13 nuclear magnetic resonance spectroscopy can be used, with minimal sample handling, to monitor sugar concentrations in sweet corn.


2021 ◽  
Vol 34 (2) ◽  
pp. 213-222
Author(s):  
Jun Sik Eom ◽  
Eun Tae Kim ◽  
Hyun Sang Kim ◽  
You Young Choi ◽  
Shin Ja Lee ◽  
...  

Objective: The metabolites that constitute the rumen fluid and milk in dairy cattle were analyzed using proton nuclear magnetic resonance (<sup>1</sup>H-NMR) spectroscopy and compared with the results obtain for other dairy cattle herds worldwide. The aim was to provide basic dataset for facilitating research on metabolites in rumen fluid and milk.Methods: Six dairy cattle were used in this study. Rumen fluid was collected using a stomach tube, and milk was collected using a pipeline milking system. The metabolites were determined by <sup>1</sup>H-NMR spectroscopy, and the obtained data were statistically analyzed by principal component analysis, partial least squares discriminant analysis, variable importance in projection scores, and metabolic pathway data using Metaboanalyst 4.0.Results: The total numbers of metabolites in rumen fluid and milk were measured to be 186 and 184, and quantified as 72 and 109, respectively. Organic acid and carbohydrate metabolites exhibited the highest concentrations in rumen fluid and milk, respectively. Some metabolites that have been associated with metabolic diseases (acidosis and ketosis) in cows were identified in rumen fluid, and metabolites associated with ketosis, somatic cell production, and coagulation properties were identified in milk.Conclusion: The metabolites measured in rumen fluid and milk could potentially be used to detect metabolic diseases and evaluate milk quality. The results could also be useful for metabolomic research on the biofluids of ruminants in Korea, while facilitating their metabolic research.


2021 ◽  
Author(s):  
Mariana Santos-Rivera ◽  
Nicholas C. Fitzkee ◽  
Rebecca A. Hill ◽  
Richard E. Baird ◽  
Ellianna Blair ◽  
...  

Abstract Each year, Bovine Respiratory Disease (BRD) results in significant economic loss in the cattle sector, and novel metabolic profiling and early diagnosis techniques represent a promising tool for developing effective measures for disease management. Here, proton - Nuclear Magnetic Resonance (1H - NMR) spectra were used to characterize metabolites from blood plasma collected from dairy calves intentionally infected with the main BRD causal agents, bovine respiratory syncytial virus (BRSV) and Mannheimia haemolytica (MH), to generate a well-defined metabolomic profile under controlled conditions. In response to infection, 42 metabolites (BRSV = 27, MH = 24) changed in concentration compared to the Baseline (non-infected) state. Fuel substrates and products exhibited a particularly strong effect, reflecting imbalances that occur during the immune response. Glucose levels decreased only during bacterial infection, suggesting that the clinical signs of bacterial BRD are more energetically taxing than those of viral BRD. Furthermore, 1H - NMR spectra from Baseline and Infected samples were discriminated with an accuracy, sensitivity, and specificity ≥ 95% using chemometrics to model the changes associated with disease, suggesting that metabolic profiles can be used for further development and validation of diagnostic tools.


Sign in / Sign up

Export Citation Format

Share Document