scholarly journals Dual Mechanism of Action of 5-Nitro-1,10-Phenanthroline against Mycobacterium tuberculosis

2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Saqib Kidwai ◽  
Chan-Yong Park ◽  
Shradha Mawatwal ◽  
Prabhakar Tiwari ◽  
Myung Geun Jung ◽  
...  

ABSTRACT New chemotherapeutic agents with novel mechanisms of action are urgently required to combat the challenge imposed by the emergence of drug-resistant mycobacteria. In this study, a phenotypic whole-cell screen identified 5-nitro-1,10-phenanthroline (5NP) as a lead compound. 5NP-resistant isolates harbored mutations that were mapped to fbiB and were also resistant to the bicyclic nitroimidazole PA-824. Mechanistic studies confirmed that 5NP is activated in an F420-dependent manner, resulting in the formation of 1,10-phenanthroline and 1,10-phenanthrolin-5-amine as major metabolites in bacteria. Interestingly, 5NP also killed naturally resistant intracellular bacteria by inducing autophagy in macrophages. Structure-activity relationship studies revealed the essentiality of the nitro group for in vitro activity, and an analog, 3-methyl-6-nitro-1,10-phenanthroline, that had improved in vitro activity and in vivo efficacy in mice compared with that of 5NP was designed. These findings demonstrate that, in addition to a direct mechanism of action against Mycobacterium tuberculosis, 5NP also modulates the host machinery to kill intracellular pathogens.

2018 ◽  
Vol 200 (13) ◽  
Author(s):  
Jerome Prusa ◽  
Drake Jensen ◽  
Gustavo Santiago-Collazo ◽  
Steven S. Pope ◽  
Ashley L. Garner ◽  
...  

ABSTRACT The RNA polymerase (RNAP) binding protein A (RbpA) contributes to the formation of stable RNAP-promoter open complexes (RP o ) and is essential for viability in mycobacteria. Four domains have been identified in the RbpA protein, i.e., an N-terminal tail (NTT) that interacts with RNAP β′ and σ subunits, a core domain (CD) that contacts the RNAP β′ subunit, a basic linker (BL) that binds DNA, and a σ-interaction domain (SID) that binds group I and group II σ factors. Limited in vivo studies have been performed in mycobacteria, however, and how individual structural domains of RbpA contribute to RbpA function and mycobacterial gene expression remains mostly unknown. We investigated the roles of the RbpA structural domains in mycobacteria using a panel of rbpA mutants that target individual RbpA domains. The function of each RbpA domain was required for Mycobacterium tuberculosis viability and optimal growth in Mycobacterium smegmatis . We determined that the RbpA SID is both necessary and sufficient for RbpA interaction with the RNAP, indicating that the primary functions of the NTT and CD are not solely association with the RNAP. We show that the RbpA BL and SID are required for RP o stabilization in vitro , while the NTT and CD antagonize this activity. Finally, RNA-sequencing analyses suggest that the NTT and CD broadly activate gene expression, whereas the BL and SID activate or repress gene expression in a gene-dependent manner for a subset of mycobacterial genes. Our findings highlight specific outcomes for the activities of the individual functional domains in RbpA. IMPORTANCE Mycobacterium tuberculosis is the causative agent of tuberculosis and continues to be the most lethal infectious disease worldwide. Improved molecular understanding of the essential proteins involved in M. tuberculosis transcription, such as RbpA, could provide targets for much needed future therapeutic agents aimed at combatting this pathogen. In this study, we expand our understanding of RbpA by identifying the RbpA structural domains responsible for the interaction of RbpA with the RNAP and the effects of RbpA on transcription initiation and gene expression. These experiments expand our knowledge of RbpA while also broadening our understanding of bacterial transcription in general.


2014 ◽  
Vol 82 (5) ◽  
pp. 1880-1890 ◽  
Author(s):  
Philippa J. Randall ◽  
Nai-Jen Hsu ◽  
Dirk Lang ◽  
Susan Cooper ◽  
Boipelo Sebesho ◽  
...  

ABSTRACTMycobacterium tuberculosisinfection of the central nervous system is thought to be initiated once the bacilli have breached the blood brain barrier and are phagocytosed, primarily by microglial cells. In this study, the interactions ofM. tuberculosiswith neuronsin vitroandin vivowere investigated. The data obtained demonstrate that neurons can act as host cells forM. tuberculosis.M. tuberculosisbacilli were internalized by murine neuronal cultured cells in a time-dependent manner after exposure, with superior uptake by HT22 cells compared to Neuro-2a cells (17.7% versus 9.8%). Internalization ofM. tuberculosisbacilli by human SK-N-SH cultured neurons suggested the clinical relevance of the findings. Moreover, primary murine hippocampus-derived neuronal cultures could similarly internalizeM. tuberculosis. InternalizedM. tuberculosisbacilli represented a productive infection with retention of bacterial viability and replicative potential, increasing 2- to 4-fold within 48 h.M. tuberculosisbacillus infection of neurons was confirmedin vivoin the brains of C57BL/6 mice after intracerebral challenge. This study, therefore, demonstrates neurons as potential new target cells forM. tuberculosiswithin the central nervous system.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Lia Danelishvili ◽  
Lmar Babrak ◽  
Sasha J. Rose ◽  
Jamie Everman ◽  
Luiz E. Bermudez

ABSTRACT Inhibition of apoptotic death of macrophages by Mycobacterium tuberculosis represents an important mechanism of virulence that results in pathogen survival both in vitro and in vivo. To identify M. tuberculosis virulence determinants involved in the modulation of apoptosis, we previously screened a transposon bank of mutants in human macrophages, and an M. tuberculosis clone with a nonfunctional Rv3354 gene was identified as incompetent to suppress apoptosis. Here, we show that the Rv3354 gene encodes a protein kinase that is secreted within mononuclear phagocytic cells and is required for M. tuberculosis virulence. The Rv3354 effector targets the metalloprotease (JAMM) domain within subunit 5 of the COP9 signalosome (CSN5), resulting in suppression of apoptosis and in the destabilization of CSN function and regulatory cullin-RING ubiquitin E3 enzymatic activity. Our observation suggests that alteration of the metalloprotease activity of CSN by Rv3354 possibly prevents the ubiquitin-dependent proteolysis of M. tuberculosis-secreted proteins. IMPORTANCE Macrophage protein degradation is regulated by a protein complex called a signalosome. One of the signalosomes associated with activation of ubiquitin and protein labeling for degradation was found to interact with a secreted protein from M. tuberculosis, which binds to the complex and inactivates it. The interference with the ability to inactivate bacterial proteins secreted in the phagocyte cytosol may have crucial importance for bacterial survival within the phagocyte.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Seong Won Choi ◽  
Yuexi Gu ◽  
Ryan Scott Peters ◽  
Padmini Salgame ◽  
Jerrold J. Ellner ◽  
...  

ABSTRACT Host-directed therapy in tuberculosis is a potential adjunct to antibiotic chemotherapy directed at Mycobacterium tuberculosis. Ambroxol, a lead compound, emerged from a screen for autophagy-inducing drugs. At clinically relevant doses, ambroxol induced autophagy in vitro and in vivo and promoted mycobacterial killing in macrophages. Ambroxol also potentiated rifampin activity in a murine tuberculosis model.


2015 ◽  
Vol 59 (8) ◽  
pp. 4446-4452 ◽  
Author(s):  
Vadim Makarov ◽  
João Neres ◽  
Ruben C. Hartkoorn ◽  
Olga B. Ryabova ◽  
Elena Kazakova ◽  
...  

ABSTRACT8-Nitro-benzothiazinones (BTZs), such as BTZ043 and PBTZ169, inhibit decaprenylphosphoryl-β-d-ribose 2′-oxidase (DprE1) and display nanomolar bactericidal activity againstMycobacterium tuberculosisin vitro. Structure-activity relationship (SAR) studies revealed the 8-nitro group of the BTZ scaffold to be crucial for the mechanism of action, which involves formation of a semimercaptal bond with Cys387 in the active site of DprE1. To date, substitution of the 8-nitro group has led to extensive loss of antimycobacterial activity. Here, we report the synthesis and characterization of the pyrrole-benzothiazinones PyrBTZ01 and PyrBTZ02, non-nitro-benzothiazinones that retain significant antimycobacterial activity, with MICs of 0.16 μg/ml againstM. tuberculosis. These compounds inhibit DprE1 with 50% inhibitory concentration (IC50) values of <8 μM and present favorablein vitroabsorption-distribution-metabolism-excretion/toxicity (ADME/T) andin vivopharmacokinetic profiles. The most promising compound, PyrBTZ01, did not show efficacy in a mouse model of acute tuberculosis, suggesting that BTZ-mediated killing through DprE1 inhibition requires a combination of both covalent bond formation and compound potency.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Pradeep Kumar ◽  
Glenn C. Capodagli ◽  
Divya Awasthi ◽  
Riju Shrestha ◽  
Karishma Maharaja ◽  
...  

ABSTRACTWe report GSK3011724A (DG167) as a binary inhibitor of β-ketoacyl-ACP synthase (KasA) inMycobacterium tuberculosis. Genetic and biochemical studies established KasA as the primary target. The X-ray crystal structure of the KasA-DG167 complex refined to 2.0-Å resolution revealed two interacting DG167 molecules occupying nonidentical sites in the substrate-binding channel of KasA. The binding affinities of KasA to DG167 and its analog, 5g, which binds only once in the substrate-binding channel, were determined, along with the KasA-5g X-ray crystal structure. DG167 strongly augmented thein vitroactivity of isoniazid (INH), leading to synergistic lethality, and also synergized in an acute mouse model ofM. tuberculosisinfection. Synergistic lethality correlated with a unique transcriptional signature, including upregulation of oxidoreductases and downregulation of molecular chaperones. The lead structure-activity relationships (SAR), pharmacokinetic profile, and detailed interactions with the KasA protein that we describe may be applied to evolve a next-generation therapeutic strategy for tuberculosis (TB).IMPORTANCECell wall biosynthesis inhibitors have proven highly effective for treating tuberculosis (TB). We discovered and validated members of the indazole sulfonamide class of small molecules as inhibitors ofMycobacterium tuberculosisKasA—a key component for biosynthesis of the mycolic acid layer of the bacterium’s cell wall and the same pathway as that inhibited by the first-line antitubercular drug isoniazid (INH). One lead compound, DG167, demonstrated synergistic lethality in combination with INH and a transcriptional pattern consistent with bactericidality and loss of persisters. Our results also detail a novel dual-binding mechanism for this compound as well as substantial structure-activity relationships (SAR) that may help in lead optimization activities. Together, these results suggest that KasA inhibition, specifically, that shown by the DG167 series, may be developed into a potent therapy that can synergize with existing antituberculars.


2014 ◽  
Vol 58 (6) ◽  
pp. 3312-3326 ◽  
Author(s):  
B. K. Kishore Reddy ◽  
Sudhir Landge ◽  
Sudha Ravishankar ◽  
Vikas Patil ◽  
Vikas Shinde ◽  
...  

ABSTRACTPantothenate kinase (PanK) catalyzes the phosphorylation of pantothenate, the first committed and rate-limiting step toward coenzyme A (CoA) biosynthesis. In our earlier reports, we had established that the type I isoform encoded by thecoaAgene is an essential pantothenate kinase inMycobacterium tuberculosis, and this vital information was then exploited to screen large libraries for identification of mechanistically different classes of PanK inhibitors. The present report summarizes the synthesis and expansion efforts to understand the structure-activity relationships leading to the optimization of enzyme inhibition along with antimycobacterial activity. Additionally, we report the progression of two distinct classes of inhibitors, the triazoles, which are ATP competitors, and the biaryl acetic acids, with a mixed mode of inhibition. Cocrystallization studies provided evidence of these inhibitors binding to the enzyme. This was further substantiated with the biaryl acids having MIC against the wild-typeM. tuberculosisstrain and the subsequent establishment of a target link with an upshift in MIC in a strain overexpressing PanK. On the other hand, the ATP competitors had cellular activity only in aM. tuberculosisknockdown strain with reduced PanK expression levels. Additionally,in vitroandin vivosurvival kinetic studies performed with aM. tuberculosisPanK (MtPanK) knockdown strain indicated that the target levels have to be significantly reduced to bring in growth inhibition. The dual approaches employed here thus established the poor vulnerability of PanK inM. tuberculosis.


2012 ◽  
Vol 195 (2) ◽  
pp. 389-398 ◽  
Author(s):  
M. F. F. Arnold ◽  
A. F. Haag ◽  
S. Capewell ◽  
H. I. Boshoff ◽  
E. K. James ◽  
...  

ABSTRACTTheSinorhizobium melilotiBacA ABC transporter protein plays an important role in its nodulating symbiosis with the legume alfalfa (Medicago sativa). TheMycobacterium tuberculosisBacA homolog was found to be important for the maintenance of chronic murine infections, yet itsin vivofunction is unknown. In the legume plant as well as in the mammalian host, bacteria encounter host antimicrobial peptides (AMPs). We found that theM. tuberculosisBacA protein was able to partially complement the symbiotic defect of anS. melilotiBacA-deficient mutant on alfalfa plants and to protect this mutantin vitrofrom the antimicrobial activity of a synthetic legume peptide, NCR247, and a recombinant human β-defensin 2 (HBD2). This finding was also confirmed using anM. tuberculosisinsertion mutant. Furthermore,M. tuberculosisBacA-mediated protection of the legume symbiontS. melilotiagainst legume defensins as well as HBD2 is dependent on its attached ATPase domain. In addition, we show thatM. tuberculosisBacA mediates peptide uptake of the truncated bovine AMP, Bac71-16. This process required a functional ATPase domain. We therefore suggest thatM. tuberculosisBacA is important for the transport of peptides across the cytoplasmic membrane and is part of a complete ABC transporter. Hence, BacA-mediated protection against host AMPs might be important for the maintenance of latent infections.


2013 ◽  
Vol 57 (10) ◽  
pp. 5138-5140 ◽  
Author(s):  
Shichun Lun ◽  
Haidan Guo ◽  
John Adamson ◽  
Justin S. Cisar ◽  
Tony D. Davis ◽  
...  

ABSTRACTMycobactin biosynthesis inMycobacterium tuberculosisfacilitates iron acquisition, which is required for growth and virulence. The mycobactin biosynthesis inhibitor salicyl-AMS [5′-O-(N-salicylsulfamoyl)adenosine] inhibitsM. tuberculosisgrowthin vitrounder iron-limited conditions. Here, we conducted a single-dose pharmacokinetic study and a monotherapy study of salicyl-AMS with mice. Intraperitoneal injection yielded much better pharmacokinetic parameter values than oral administration did. Monotherapy of salicyl-AMS at 5.6 or 16.7 mg/kg significantly inhibitedM. tuberculosisgrowth in the mouse lung, providing the firstin vivoproof of concept for this novel antibacterial strategy.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Kenneth D. James ◽  
Christopher P. Laudeman ◽  
Navdeep B. Malkar ◽  
Radha Krishnan ◽  
Karen Polowy

ABSTRACT Echinocandins are a first-line therapy for candidemia and invasive candidiasis. They are generally safe with few drug interactions, but the stability and pharmacokinetic properties of currently approved echinocandins are such that each was developed for daily intravenous infusion. We sought to discover a novel echinocandin with properties that would enable more flexible dosing regimens, alternate routes of delivery, and expanded utility. Derivatives of known echinocandin scaffolds were generated, and an iterative process of design and screening led to the discovery of CD101, a novel echinocandin that has since demonstrated improved chemical stability and pharmacokinetics. Here, we report the structure-activity relationships (including preclinical efficacy and pharmacokinetic data) for the series of echinocandin analogs from which CD101 was selected. In a mouse model of disseminated candidiasis, the test compounds displayed clear dose responses and were generally associated with lower fungal burdens than that of anidulafungin. Single-dose pharmacokinetic studies in beagle dogs revealed a wide disparity in the half-lives and volumes of distribution, with one compound (now known as CD101) displaying a half-life that is nearly 5-fold longer than that of anidulafungin (53.1 h versus 11.6 h, respectively). In vitro activity data against panels of Candida spp. and Aspergillus spp. demonstrated that CD101 behaved similarly to approved echinocandins in terms of potency and spectrum of activity, suggesting that the improved efficacy observed in vivo for CD101 is a result of features beyond the antifungal potency inherent to the molecule. Factors that potentially contribute to the improved in vivo efficacy of CD101 are discussed.


Sign in / Sign up

Export Citation Format

Share Document