scholarly journals Monoclonal antibodies against cell wall chitooligomers as accessory tools for the control of cryptococcosis

Author(s):  
Alexandre Bezerra Conde Figueiredo ◽  
Fernanda L. Fonseca ◽  
Diogo Kuczera ◽  
Fernando de Paiva Conte ◽  
Marcia Arissawa ◽  
...  

Therapeutic strategies against systemic mycoses can involve antifungal resistance and significant toxicity. Thus, novel therapeutic approaches to fight fungal infections are urgent. Monoclonal antibodies (mAbs) are promising tools to fight systemic mycoses. In this study, mAbs of the IgM isotype were developed against chitin oligomers. Chitooligomers derive from chitin, an essential component of the fungal cell wall and a promising therapeutic target, as it is not synthesized by humans or animals. Surface plasmon resonance (SPR) assays and cell-binding tests showed that the mAbs recognizing chitooligomers have high affinity and specificity for the chitin derivatives. In vitro tests showed that the chitooligomer mAbs increased the fungicidal capacity of amphotericin B against Cryptococcus neoformans . The chitooligomer-binding mAbs interfered with two essential properties related to cryptococcal pathogenesis: biofilm formation and melanin production. In a murine model of C. neoformans infection, the combined administration of the chitooligomer-binding mAb and subinhibitory doses of amphotericin B promoted disease control. The data obtained in this study support the hypothesis that chitooligomer antibodies are of great potential as accessory tools in the control of cryptococcosis.

2021 ◽  
Author(s):  
Alexandre Figueiredo ◽  
Fernanda Fonseca ◽  
Fernando Conte ◽  
Marcia Arissawa ◽  
Marcio L. Rodrigues

Therapeutic strategies against systemic mycoses can involve antifungal resistance and significant toxicity. Thus, novel therapeutic approaches to fight fungal infections are urgent. Monoclonal antibodies (mAbs) are promising tools to fight systemic mycoses. In this study, mAbs of the IgM isotype were developed against chitin oligomers. Chitooligomers derive from chitin, an essential component of the fungal cell wall and a promising therapeutic target, as it is not synthesized by humans or animals. Surface plasmon resonance (SPR) assays and cell-binding tests showed that the mAbs recognizing chitooligomers have high affinity and specificity for the chitin derivatives. In vitro tests showed that the chitooligomer mAbs increased the fungicidal capacity of amphotericin B against Cryptococcus neoformans. The chitooligomer-binding mAbs interfered with two essential properties related to cryptococcal pathogenesis: biofilm formation and melanin production. In a murine model of C. neoformans infection, the combined administration of the chitooligomer-binding mAb and subinhibitory doses of amphotericin B promoted disease control. The data obtained in this study support the hypothesis that chitooligomer antibodies are of great potential as accessory tools in the control of cryptococcosis.


2002 ◽  
Vol 49 (suppl_1) ◽  
pp. 21-30 ◽  
Author(s):  
Jill Adler-Moore ◽  
Richard T. Proffitt

Abstract Amphotericin B is the treatment of choice for life-threatening systemic fungal infections such as candidosis and aspergillosis. To improve this drug's efficacy and reduce its acute and chronic toxicities, several lipid formulations of the drug have been developed, including AmBisome, a liposomal formulation of amphotericin B. The liposome is composed of high transition temperature phospholipids and cholesterol, designed to incorporate amphotericin B securely into the liposomal bilayer. AmBisome can bind to fungal cell walls, where the liposome is disrupted. The amphotericin B, after being released from the liposomes, is thought to transfer through the cell wall and bind to ergosterol in the fungal cell membrane. This mechanism of action of AmBisome results in its potent in vitro fungicidal activity while the integrity of the liposome is maintained in the presence of mammalian cells, for which it has minimal toxicity. In animal models, AmBisome is effective in treating both intracellular (leishmaniasis and histoplasmosis) and extracellular (candidosis and aspergillosis) systemic infections. Because of its low toxicity at the organ level, intravenous AmBisome can be safely delivered at markedly high doses of amphotericin B (1–30 mg/kg) for the treatment of systemic fungal infections. AmBisome has a circulating half-life of 5–24 h in animals, and in animal models appears to localize at sites of infection in the brain (cryptococcosis, aspergillosis, coccidioidomycosis), lungs (blastomycosis, paracoccidioidomycosis, aspergillosis) and kidneys (candidosis), delivering amphotericin B that remains bioavailable in tissues for several weeks following treatment.


1999 ◽  
Vol 181 (2) ◽  
pp. 444-453 ◽  
Author(s):  
John R. Thompson ◽  
Cameron M. Douglas ◽  
Weili Li ◽  
Chong K. Jue ◽  
Barnali Pramanik ◽  
...  

ABSTRACT Cryptococcal meningitis is a fungal infection, caused byCryptococcus neoformans, which is prevalent in immunocompromised patient populations. Treatment failures of this disease are emerging in the clinic, usually associated with long-term treatment with existing antifungal agents. The fungal cell wall is an attractive target for drug therapy because the syntheses of cell wall glucan and chitin are processes that are absent in mammalian cells. Echinocandins comprise a class of lipopeptide compounds known to inhibit 1,3-β-glucan synthesis, and at least two compounds belonging to this class are currently in clinical trials as therapy for life-threatening fungal infections. Studies ofSaccharomyces cerevisiae and Candida albicansmutants identify the membrane-spanning subunit of glucan synthase, encoded by the FKS genes, as the molecular target of echinocandins. In vitro, the echinocandins show potent antifungal activity against Candida and Aspergillusspecies but are much less potent against C. neoformans. In order to examine why C. neoformans cells are less susceptible to echinocandin treatment, we have cloned a homolog of S. cerevisiae FKS1 from C. neoformans. We have developed a generalized method to evaluate the essentiality of genes inCryptococcus and applied it to the FKS1 gene. The method relies on homologous integrative transformation with a plasmid that can integrate in two orientations, only one of which will disrupt the target gene function. The results of this analysis suggest that the C. neoformans FKS1 gene is essential for viability. The C. neoformans FKS1 sequence is closely related to the FKS1 sequences from other fungal species and appears to be single copy in C. neoformans. Furthermore, amino acid residues known to be critical for echinocandin susceptibility in Saccharomyces are conserved in theC. neoformans FKS1 sequence.


1996 ◽  
Vol 9 (4) ◽  
pp. 512-531 ◽  
Author(s):  
J Brajtburg ◽  
J Bolard

Amphotericin B (AmB), the drug of choice for the treatment of most systemic fungal infections, is marketed under the trademark Fungizone, as an AmB-deoxycholate complex suitable for intravenous administration. The association between AmB and deoxycholate is relatively weak; therefore, dissociation occurs in the blood. The drug itself interacts with both mammalian and fungal cell membranes to damage cells, but the greater susceptibility of fungal cells to its effects forms the basis for its clinical usefulness. The ability of the drug to form stable complexes with lipids has allowed the development of new formulations of AmB based on this property. Several lipid-based formulations of the drug which are more selective in damaging fungal or parasitic cells than mammalian cells and some of which also have a better therapeutic index than Fungizone have been developed. In vitro investigations have led to the conclusion that the increase in selectivity observed is due to the selective transfer of AmB from lipid complexes to fungal cells or to the higher thermodynamic stability of lipid formulations. Association with lipids modulates AmB binding to lipoproteins in vivo, thus influencing tissue distribution and toxicity. For example, lipid complexes of AmB can be internalized by macrophages, and the macrophages then serve as a reservoir for the drug. Furthermore, stable AmB-lipid complexes are much less toxic to the host than Fungizone and can therefore be administered in higher doses. Experimentally, the efficacy of AmB-lipid formulations compared with Fungizone depends on the animal model used. Improved therapeutic indices for AmB-lipid formations have been demonstrated in clinical trials, but the definitive trials leading to the selection of an optimal formulation and therapeutic regimen have not been done.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A816-A816
Author(s):  
Karishma Bavisi ◽  
Sebastian Wurster ◽  
Nathaniel Albert ◽  
Sattva Neelapu ◽  
Dimitrios P Kontoyiannis ◽  
...  

BackgroundOpportunistic invasive fungal infections (IFI) are a major threat to immunocompromised populations such as patients with acute myeloid leukemia (AML) and allogenic hematopoietic stem cell transplant (HSCT) recipients(1,2). Specifically, Aspergillus fumigatus (AF) is responsible for high morbidity and mortality in cancer patients. As antifungal therapy has limited efficacy in immunocompromised patients, we sought to develop fungus-specific chimeric antigen receptor (CAR) T cells as a novel immune augmentation strategy to treat IFIs including invasive aspergillosis. To target fungal pathogens, we fused the pattern-recognition receptor Dectin-1 to activate T cells via chimeric CD28 and CD3-ζ domains upon binding to β-1,3-glucan carbohydrates in the fungal cell wall(3). The generated Dectin-1 CAR+ T cells showed high specificity for β-1,3-gucan and inhibited the growth and branching of AF germlings in an in-vitro co-culture assay. However, we found poor efficacy of Dectin-1 CAR+ T cells against mature AF hyphae, likely due to changes in the fungal cell wall that hamper T-cellular binding to β-1,3-glucan carbohydrates. To overcome this limitation, we have recently developed an AF-specific CAR (AF-CAR) based on a monoclonal antibody which recognizes a surface epitope of mature AF hyphae.MethodsLentiviral vectors were used to generate AF-CAR expressing T cells from human peripheral blood mononuclear cells. Heat killed AF-293 hyphae was used for co-culture studies with No DNA T cells, and AF-CAR expressing T cells. Cell clusters, binding with AF hyphae were noticed in AF-CAR incubated wells whereas no such cell cluster were observed in NoDNA T cells incubated wells.ResultsWhen co-incubated with AF hyphae, AF-CAR+ T cells efficiently targeted mature hyphae and formed lytic synapses with hyphal filaments. The released cytolytic granules damage hyphae and controls branch node formation. Furthermore, exposure to AF hyphae stimulated significant upregulation of activation markers CD69 and CD154 on AF-CAR+ T cells. The activated CAR T cell secretes proinflammatory cytokines which can boost innate immune system to fight against IFI.ConclusionsIn summary, these results indicate that we have successfully generated a novel anti-Aspergillus CAR construct with good in-vitro targeting efficacy against mature AF hyphae. After thorough evaluation of fungicidal activity, cytokine response patterns, and release of cytotoxic mediators, we plan to embark on preclinical tolerability and efficacy studies in a murine model of invasive pulmonary aspergillosis. Thus, we report the production of Aspergillus specific CAR T cells to provide long term protection to immunocompromised patients, such as AML patients and HSCT recipients, from invasive Aspergillus infections.AcknowledgementsThis study was supported by NIAID-R33 AI127381.Ethics ApprovalThis study was approved by IBC committee, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030.ReferencesPappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, Anaissie EJ, Brumble LM, Herwaldt L, Ito J, Kontoyiannis DP, Lyon GM, Marr KA, Morrison VA, Park BJ, Patterson TF, Perl TM, Oster RA, Schuster MG, Walker R, Walsh TJ, Wannemuehler KA, Chiller TM. Invasive fungal infections among organ transplant recipients: results of the transplant-associated infection surveillance network (TRANSNET). Clin Infect Dis 2010;50(8):1101–11.Bhatt VR, Viola GM, Ferrajoli A. Invasive fungal infections in acute leukemia. Ther Adv Hematol 2011;2(4):231–47.Kumaresan PR, Manuri PR, Albert ND, Maiti S, Singh H, Mi T, Roszik J, Rabinovich B, Olivares S, Krishnamurthy J, Zhang L, Najjar AM, Huls MH, Lee DA, Champlin RE, Kontoyiannis DP, Cooper LJ, Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc Natl Acad Sci U S A 2014;111(29):10660–5.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rocio Garcia-Rubio ◽  
Rosa Y. Hernandez ◽  
Alissa Clear ◽  
Kelley R. Healey ◽  
Erika Shor ◽  
...  

Fungal infections are on the rise, and emergence of drug-resistant Candida strains refractory to treatment is particularly alarming. Resistance to azole class antifungals, which have been extensively used worldwide for several decades, is so high in several prevalent fungal pathogens, that another drug class, the echinocandins, is now recommended as a first line antifungal treatment. However, resistance to echinocandins is also prominent, particularly in certain species, such as Candida glabrata. The echinocandins target 1,3-β-glucan synthase (GS), the enzyme responsible for producing 1,3-β-glucans, a major component of the fungal cell wall. Although echinocandins are considered fungicidal, C. glabrata exhibits echinocandin tolerance both in vitro and in vivo, where a subset of the cells survives and facilitates the emergence of echinocandin-resistant mutants, which are responsible for clinical failure. Despite this critical role of echinocandin tolerance, its mechanisms are still not well understood. Additionally, most studies of tolerance are conducted in vitro and are thus not able to recapitulate the fungal-host interaction. In this study, we focused on the role of cell wall integrity factors in echinocandin tolerance in C. glabrata. We identified three genes involved in the maintenance of cell wall integrity – YPS1, YPK2, and SLT2 – that promote echinocandin tolerance both in vitro and in a mouse model of gastrointestinal (GI) colonization. In particular, we show that mice colonized with strains carrying deletions of these genes were more effectively sterilized by daily caspofungin treatment relative to mice colonized with the wild-type parental strain. Furthermore, consistent with a role of tolerant cells serving as a reservoir for generating resistant mutations, a reduction in tolerance was associated with a reduction in the emergence of resistant strains. Finally, reduced susceptibility in these strains was due both to the well described FKS-dependent mechanisms and as yet unknown, FKS-independent mechanisms. Together, these results shed light on the importance of cell wall integrity maintenance in echinocandin tolerance and emergence of resistance and lay the foundation for future studies of the factors described herein.


2021 ◽  
Vol 8 ◽  
Author(s):  
Thomas Voit ◽  
Fabian Cieplik ◽  
Johannes Regensburger ◽  
Karl-Anton Hiller ◽  
Anita Gollmer ◽  
...  

The antimicrobial photodynamic therapy (aPDT) is a promising approach for the control of microbial and especially fungal infections such as mucosal mycosis. TMPyP [5,10,15, 20-tetrakis(1-methylpyridinium-4-yl)-porphyrin tetra p-toluenesulfonate] is an effective photosensitizer (PS) that is commonly used in aPDT. The aim of this study was to examine the localization of TMPyP in Candida albicans before and after irradiation with visible light to get information about the cellular mechanism of antifungal action of the photodynamic process using this PS. Immediately after incubation of C. albicans with TMPyP, fluorescence microscopy revealed an accumulation of the PS in the cell envelope. After irradiation with blue light the complete cell showed red fluorescence, which indicates, that aPDT is leading to a damage in the cell wall with following influx of PS into the cytosol. Incubation of C. albicans with Wheat Germ Agglutinin (WGA) could confirm the cell wall as primary binding site of TMPyP. The finding that the porphyrin accumulates in the fungal cell wall and does not enter the interior of the cell before irradiation makes it unlikely that resistances can emerge upon aPDT. The results of this study may help in further development and modification of PS in order to increase efficacy against fungal infections such as those caused by C. albicans.


2020 ◽  
Vol 8 ◽  
Author(s):  
Yury E. Tsvetkov ◽  
Ema Paulovičová ◽  
Lucia Paulovičová ◽  
Pavol Farkaš ◽  
Nikolay E. Nifantiev

Chitin, a polymer of β-(1→4)-linked N-acetyl-d-glucosamine, is one of the main polysaccharide components of the fungal cell wall. Its N-deacetylated form, chitosan, is enzymatically produced in the cell wall by chitin deacetylases. It exerts immunomodulative, anti-inflammatory, anti-cancer, anti-bacterial, and anti-fungal activities with various medical applications. To study the immunobiological properties of chitosan oligosaccharides, we synthesized a series of β-(1→4)-linked N-acetyl-d-glucosamine oligomers comprising 3, 5, and 7 monosaccharide units equipped with biotin tags. The key synthetic intermediate employed for oligosaccharide chain elongation, a disaccharide thioglycoside, was prepared by orthogonal glycosylation of a 4-OH thioglycoside acceptor with a glycosyl trichloroacetimidate bearing the temporary 4-O-tert-butyldimethylsilyl group. The use of silyl protection suppressed aglycon transfer and provided a high yield for the target disaccharide donor. Using synthesized chitosan oligomers, as well as previously obtained chitin counterparts, the immunobiological relationship between these synthetic oligosaccharides and RAW 264.7 cells was studied in vitro. Evaluation of cell proliferation, phagocytosis, respiratory burst, and Th1, Th2, Th17, and Treg polarized cytokine expression demonstrated effective immune responsiveness and immunomodulation in RAW 264.7 cells exposed to chitin- and chitosan-derived oligosaccharides. Macrophage reactivity was accompanied by significant inductive dose- and structure-dependent protective Th1 and Th17 polarization, which was greater with exposure to chitosan- rather than chitin-derived oligosaccharides. Moreover, no antiproliferative or cytotoxic effects were observed, even following prolonged 48 h exposure. The obtained results demonstrate the potent immunobiological activity of these synthetically prepared chito-oligosaccharides.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Felipe Queiroga Sarmento Guerra ◽  
Rodrigo Santos Aquino de Araújo ◽  
Janiere Pereira de Sousa ◽  
Fillipe de Oliveira Pereira ◽  
Francisco J. B. Mendonça-Junior ◽  
...  

Aspergillusspp. produce a wide variety of diseases. For the treatment of such infections, the azoles and Amphotericin B are used in various formulations. The treatment of fungal diseases is often ineffective, because of increases in azole resistance and their several associated adverse effects. To overcome these problems, natural products and their derivatives are interesting alternatives. The aim of this study was to examine the effects of coumarin derivative, 7-hydroxy-6-nitro-2H-1-benzopyran-2-one (Cou-NO2), both alone and with antifungal drugs. Its mode of action againstAspergillusspp. Cou-NO2was tested to evaluate its effects on mycelia growth and germination of fungal conidia ofAspergillusspp. We also investigated possible Cou-NO2action on cell walls (0.8 M sorbitol) and on Cou-NO2to ergosterol binding in the cell membrane. The study shows that Cou-NO2is capable of inhibiting both the mycelia growth and germination of conidia for the species tested, and that its action affects the structure of the fungal cell wall. At subinhibitory concentration, Cou-NO2enhanced thein vitroeffects of azoles. Moreover, in combination with azoles (voriconazole and itraconazole) Cou-NO2displays an additive effect. Thus, our study supports the use of coumarin derivative 7-hydroxy-6-nitro-2H-1-benzopyran-2-one as an antifungal agent againstAspergillusspecies.


2011 ◽  
Vol 166 (1) ◽  
pp. 87-93 ◽  
Author(s):  
M. Terčelj ◽  
S. Stopinšek ◽  
A. Ihan ◽  
B. Salobir ◽  
S. Simčič ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document