scholarly journals A single nucleotide change in the promotermutpenhances fluoride resistance ofStreptococcus mutans

2016 ◽  
pp. AAC.01366-16 ◽  
Author(s):  
Ying Liao ◽  
Bernd W. Brandt ◽  
Min Zhang ◽  
Jiyao Li ◽  
Wim Crielaard ◽  
...  

Previously, we identified a single nucleotide mutation in the promoter (mutp) of the fluoride antiporter-coding genes in a naturally fluoride-resistantStreptococcus mutansstrain. Here, we studied the role of this mutation in a defined genetic background. The results confirmed that this mutation alone confers fluoride resistance onS. mutans, as shown by growth and lactic acid production assays. This resistance was explained by constitutively highermutppromoter activity and up-regulation of the fluoride antiporter-coding genes.

2021 ◽  
Author(s):  
Xinpeng Zhao ◽  
Zhimin Zhou ◽  
hu luo ◽  
Yanfei Zhang ◽  
Wang Liu ◽  
...  

Combined experiments and density functional theory (DFT) calculations provided insights into the role of the environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid...


2021 ◽  
Author(s):  
Isabelle C. Becker ◽  
Zoltan Nagy ◽  
Georgi Manukjan ◽  
Melanie Haffner-Luntzer ◽  
Maximilian Englert ◽  
...  

G6b-B is a megakaryocyte lineage-specific immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptor, essential for platelet homeostasis. Mice with a genomic deletion of the entire Mpig6b locus develop severe macrothrombocytopenia and myelofibrosis, which is reflected in humans with null-mutations in MPIG6B. The current model proposes that megakaryocytes lacking G6b-B develop normally, while proplatelet release is hampered, but the underlying molecular mechanism remains unclear. Here, we report on a spontaneous recessive single nucleotide mutation in C57BL/6 mice, localized within the intronic region of the Mpig6b locus that abolishes G6b-B expression and reproduces macrothrombocytopenia, myelofibrosis and osteosclerosis. As the mutation is based on a single nucleotide exchange, Mpig6bmut mice represent an ideal model to study the role of G6b-B. Megakaryocytes from these mice were smaller in size, displayed a less developed demarcation membrane system and reduced expression of receptors. RNA sequencing revealed a striking global reduction in the level of megakaryocyte specific transcripts, in conjunction with decreased protein levels of the transcription factor GATA-1, and impaired thrombopoietin signaling. The reduced number of mature MKs in the bone marrow was corroborated on a newly developed Mpig6b null mouse strain. Our findings highlight an unexpected essential role of G6b-B in the early differentiation within the megakaryocytic lineage.


2019 ◽  
Vol 317 (2) ◽  
pp. C189-C199 ◽  
Author(s):  
Li Liu ◽  
Tian-Mei Li ◽  
Xue-Ru Liu ◽  
Yi-Ping Bai ◽  
Jie Li ◽  
...  

Sepsis is a systemic inflammatory response syndrome resulting from infection. This study aimed at exploring the role of microRNA-140 (miR-140) in septic mice. Wnt family member 11 (WNT11) was verified to be a target gene of miR-140 after bioinformatic prediction and dual luciferase reporter gene assay. Importantly, miR-140 negatively regulated WNT11. We initially induced the model of sepsis by endotoxin, and then ectopic expression and knockdown experiments were performed to explore the functional role of miR-140 in sepsis. Additionally, cross-sectional areas of muscle fiber, lactic acid production, 3-methylhistidine (3-MH) and tyrosine (Tyr) production in extensor digitorium longus (EDL) muscles, and serum levels of inflammatory factors were examined. The effect of miR-140 on the expression of WNT signaling pathway-related and apoptosis-related factors in skeletal muscle tissue was determined. The experimental results indicated that upregulated miR-140 or silenced WNT11 increased cross-sectional areas of muscle fiber while decreasing lactic acid production, skeletal muscle cell apoptosis [corresponding to downregulated B cell lymphoma 2 (Bcl-2)-associated X protein (Bax) and caspase-3 and upregulated Bcl-2], and the proteolytic rate of Tyr and 3-MH. Also, overexpressed miR-140 or silenced WNT11 reduced inflammation as reflected by decreased serum levels of IL-6, IL-10, and TNF-α. Furthermore, overexpression of miR-140 was shown to suppress the activation of the WNT signaling pathway, accompanied by decreased expression of WNT11, β-catenin, and GSK-3β. Taken together, upregulation of miR-140 could potentially inhibit skeletal muscle lactate release, an indirect measure of glycolysis, and atrophy in septic mice through suppressing the WNT signaling pathway via inhibiting WNT11 expression.


Transfusion ◽  
2010 ◽  
Vol 50 (4) ◽  
pp. 856-860 ◽  
Author(s):  
Randall W. Velliquette ◽  
Zong Hu ◽  
Christine Lomas-Francis ◽  
Kim Hue-Roye ◽  
Jean L. Allen ◽  
...  

Genome ◽  
2004 ◽  
Vol 47 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Joanne Russell ◽  
Allan Booth ◽  
John Fuller ◽  
Brian Harrower ◽  
Peter Hedley ◽  
...  

Direct estimates of sequence diversity provides an abundant source of DNA polymorphisms based on single nucleotide polymorphisms (SNPs). The frequency and distribution of nucleotide diversity within 23 genes associated with grain germination in barley were determined in a sample of accessions representing European cultivars, landraces, and wild barley accessions from throughout the fertile crescent. The overall nucleotide diversity ranged from 0.0021 to 0.0189 with a single nucleotide change being detected every 78 bp and insertion–deletion events being observed every 680 bp. Within the cultivated (H. vulgare) genepool, a small number of haplotypes were detected, the total number of haplotypes observed in H. spontaneum was almost double that detected in H. vulgare (46 and 26, respectively). Distinct haplotypes were observed in the H. spontaneum and landrace genepools, which are highly divergent from H. vulgare. A comparison of SNP-based haplotype data with EST-derived SSRs and genomic SSRs revealed a similar trend of decreasing variability in the cultivated genepool. However, the number of unique alleles identified in the cultivated sample was much greater with genomic SSRs (18%) compared with only 2.1% for SNPs and 3.8% for EST-derived SSRs. The potential utility of SNPs and EST-derived SSRs for association mapping in barley is discussed.Key words: SNPs, haplotype, SSRs, barley.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2586-2586
Author(s):  
Rodrigo Jacamo ◽  
Juliana Benito ◽  
Olga Frolova ◽  
Ye Chen ◽  
Hongbo Lu ◽  
...  

Abstract Abstract 2586 Resistance to chemotherapy can be mediated by genetic, epigenetic and microenvironmental causes. Only recently the connection between leukemia growth and survival and the hypoxic state of the BM microenvironment has been appreciated, by work conducted by us and others (Fiegl M et.al. Blood 2009; 113: 1504–1512; Harrison JS et. al., Blood 2002; 99). In extension of this concept we investigated the role of Hypoxia-Inducible-Factor 1α (HIF1A), the master regulator of hypoxia induced responses, in the microenvironment and its relevance for leukemia progression. Here we focused on the role of hypoxia and HIF transcription factors in cells contributing to the BM microenvironment, the mesenchymal stromal cells (MSC). Co-culture of lymphoid (NALM6) and myeloid (OCI-AML3) leukemic cell lines with BM-derived MSC under hypoxic conditions (1% O2) stimulated the secretion of a number of pro-survival cytokines and chemokines (including IL-6, VEGF, Beta-NGF and SDF-1α) that were quantified in co-culture supernatants by Luminex flow cytometry (Table 1). These findings suggest that hypoxia, and possibly its main mediator, the transcription factor HIF1A, may be responsible for the increased production of these factors. Since the chemokine stromal cell-derived factor-1α (SDF-1α) is involved in the attraction of leukemic cells towards cells of the BM microenvironment, we next investigated the role of HIF1A expression in MSC and its effect on SDF-1 secretion and migration of leukemic cells under hypoxic conditions. To this end, we generated primary human BM MSC stably transduced with lentiviral-encoded shRNA against HIF1A. SDF-1α transcription levels measured by qRT-PCR were diminished (∼30%, p<0.01) in HIF1A-silenced MSCs compared to control MSCs expressing non-silencing shRNA. This correlated with significantly reduced transwell migration of OCI-AML3 cells towards HIF1A-silenced MSCs compared with control (non-silencing) MSCs (∼35%, p<0.05) under hypoxic conditions. We next examined the contribution of hypoxia and HIF1A in the protective role of the BM microenvironment against standard chemotherapy with AraC and Doxorubicin. To this end, we performed in vitro experiments co culturing OCI-AML3 cells with either HIF1A-silenced MSCs or control MSCs under hypoxic conditions. After 48h of drug treatment a significant decrease in chemotherapy-induced apoptosis in leukemic cells co-cultured with control MSCs compared to leukemic cells cultured alone was observed. In turn, chemoresistance was reduced in OCI-AML3 co-cultured with HIF1A-silenced MSC, suggesting that hypoxia mediates chemoresistance largely through its effects on cells of the BM microenvironment. It has been shown that leukemic cells seem to exhibit increased dependency on glycolysis for ATP generation, which is frequently associated with resistance to therapeutic agents. Therefore, we measured the production of lactic acid (LA) in leukemic cells co-cultured with MSC in hypoxia compared to normoxia. In agreement with previous observations, we found that REH and primary ALL cells produced more LA when they were co-cultured with MSC under hypoxia compared to normoxia (∼1.8 fold, p<0.05). When REH cells were co-cultured with HIF1A-silenced MSCs in hypoxic conditions the lactic acid production was slightly but significantly reduced (∼20%, p<0.05) compared with the values observed in REH-control MSCs co-culture supernatants. Altogether, these findings strongly point to hypoxia and HIF1A as pivotal components in the protection from chemotherapy mediated by the BM microenvironment. We propose that targeting HIF1A and hypoxia in the protective cells of the bone marrow niches may represent a new approach to increase chemosensitivity of leukemic cells and hopefully improve the existing therapeutic strategies. Table 1: Fold increase observed in leukemic cells-MSC co-culture supernatants in hypoxia compared to normoxia. OCI-AML3+MSC NALM6+MSC IL-6 ∼3.1 ∼1.2 VEGF ∼3 ∼2 B-NGF ∼8 ∼10 SDF-1 ∼1.5 ∼1.5 Disclosure: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document