scholarly journals Proteomic Response of Bacillus subtilis to Lantibiotics Reflects Differences in Interaction with the Cytoplasmic Membrane

2012 ◽  
Vol 56 (11) ◽  
pp. 5749-5757 ◽  
Author(s):  
Michaela Wenzel ◽  
Bastian Kohl ◽  
Daniela Münch ◽  
Nadja Raatschen ◽  
H. Bauke Albada ◽  
...  

ABSTRACTMersacidin, gallidermin, and nisin are lantibiotics, antimicrobial peptides containing lanthionine. They show potent antibacterial activity. All three interfere with cell wall biosynthesis by binding lipid II, but they display different levels of interaction with the cytoplasmic membrane. On one end of the spectrum, mersacidin interferes with cell wall biosynthesis by binding lipid II without integrating into bacterial membranes. On the other end of the spectrum, nisin readily integrates into membranes, where it forms large pores. It destroys the membrane potential and causes leakage of nutrients and ions. Gallidermin, in an intermediate position, also readily integrates into membranes. However, pore formation occurs only in some bacteria and depends on membrane composition. In this study, we investigated the impact of nisin, gallidermin, and mersacidin on cell wall integrity, membrane pore formation, and membrane depolarization inBacillus subtilis. The impact of the lantibiotics on the cell envelope was correlated to the proteomic response they elicit inB. subtilis. By drawing on a proteomic response library, including other envelope-targeting antibiotics such as bacitracin, vancomycin, gramicidin S, or valinomycin, YtrE could be identified as the most reliable marker protein for interfering with membrane-bound steps of cell wall biosynthesis. NadE and PspA were identified as markers for antibiotics interacting with the cytoplasmic membrane.

mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Hannah Piepenbreier ◽  
Andre Sim ◽  
Carolin M. Kobras ◽  
Jara Radeck ◽  
Thorsten Mascher ◽  
...  

ABSTRACT Bacterial resistance against antibiotics often involves multiple mechanisms that are interconnected to ensure robust protection. So far, the knowledge about underlying regulatory features of those resistance networks is sparse, since they can hardly be determined by experimentation alone. Here, we present the first computational approach to elucidate the interplay between multiple resistance modules against a single antibiotic and how regulatory network structure allows the cell to respond to and compensate for perturbations of resistance. Based on the response of Bacillus subtilis toward the cell wall synthesis-inhibiting antibiotic bacitracin, we developed a mathematical model that comprehensively describes the protective effect of two well-studied resistance modules (BceAB and BcrC) on the progression of the lipid II cycle. By integrating experimental measurements of expression levels, the model accurately predicts the efficacy of bacitracin against the B. subtilis wild type as well as mutant strains lacking one or both of the resistance modules. Our study reveals that bacitracin-induced changes in the properties of the lipid II cycle itself control the interplay between the two resistance modules. In particular, variations in the concentrations of UPP, the lipid II cycle intermediate that is targeted by bacitracin, connect the effect of the BceAB transporter and the homeostatic response via BcrC to an overall resistance response. We propose that monitoring changes in pathway properties caused by a stressor allows the cell to fine-tune deployment of multiple resistance systems and may serve as a cost-beneficial strategy to control the overall response toward this stressor. IMPORTANCE Antibiotic resistance poses a major threat to global health, and systematic studies to understand the underlying resistance mechanisms are urgently needed. Although significant progress has been made in deciphering the mechanistic basis of individual resistance determinants, many bacterial species rely on the induction of a whole battery of resistance modules, and the complex regulatory networks controlling these modules in response to antibiotic stress are often poorly understood. In this work we combined experiments and theoretical modeling to decipher the resistance network of Bacillus subtilis against bacitracin, which inhibits cell wall biosynthesis in Gram-positive bacteria. We found a high level of cross-regulation between the two major resistance modules in response to bacitracin stress and quantified their effects on bacterial resistance. To rationalize our experimental data, we expanded a previously established computational model for the lipid II cycle through incorporating the quantitative action of the resistance modules. This led us to a systems-level description of the bacitracin stress response network that captures the complex interplay between resistance modules and the essential lipid II cycle of cell wall biosynthesis and accurately predicts the minimal inhibitory bacitracin concentration in all the studied mutants. With this, our study highlights how bacterial resistance emerges from an interlaced network of redundant homeostasis and stress response modules.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 729
Author(s):  
Angelika Diehl ◽  
Thomas M. Wood ◽  
Susanne Gebhard ◽  
Nathaniel I. Martin ◽  
Georg Fritz

Cell wall antibiotics are important tools in our fight against Gram-positive pathogens, but many strains become increasingly resistant against existing drugs. Laspartomycin C is a novel antibiotic that targets undecaprenyl phosphate (UP), a key intermediate in the lipid II cycle of cell wall biosynthesis. While laspartomycin C has been thoroughly examined biochemically, detailed knowledge about potential resistance mechanisms in bacteria is lacking. Here, we use reporter strains to monitor the activity of central resistance modules in the Bacillus subtilis cell envelope stress response network during laspartomycin C attack and determine the impact on the resistance of these modules using knock-out strains. In contrast to the closely related UP-binding antibiotic friulimicin B, which only activates ECF σ factor-controlled stress response modules, we find that laspartomycin C additionally triggers activation of stress response systems reacting to membrane perturbation and blockage of other lipid II cycle intermediates. Interestingly, none of the studied resistance genes conferred any kind of protection against laspartomycin C. While this appears promising for therapeutic use of laspartomycin C, it raises concerns that existing cell envelope stress response networks may already be poised for spontaneous development of resistance during prolonged or repeated exposure to this new antibiotic.


2008 ◽  
Vol 74 (15) ◽  
pp. 4666-4670 ◽  
Author(s):  
Beatriz Martínez ◽  
Tim Böttiger ◽  
Tanja Schneider ◽  
Ana Rodríguez ◽  
Hans-Georg Sahl ◽  
...  

ABSTRACT Lactococcin 972 (Lcn972) is a nonlantibiotic bacteriocin that inhibits septum biosynthesis in Lactococcus lactis rather than forming pores in the cytoplasmic membrane. In this study, a deeper analysis of the molecular basis of the mode of action of Lcn972 was performed. Of several lipid cell wall precursors, only lipid II antagonized Lcn972 inhibitory activity in vivo. Likewise, Lcn972 only coprecipitated with lipid II micelles. This bacteriocin inhibited the in vitro polymerization of lipid II by the recombinant S. aureus PBP2 and the addition to lipid II of the first glycine catalyzed by FemX. These experiments demonstrate that Lcn972 specifically interacts with lipid II, the substrate of both enzymes. In the presence of Lcn972, nisin pore formation was partially hindered in whole cells. However, binding of Lcn972 to lipid II could not compete with nisin in lipid II-doped 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes, possibly indicating a distinct binding site. The existence of a putative cotarget for Lcn972 activity is discussed in the context of its narrow inhibitory spectrum and the localized action at the division septum. To our knowledge, this is the first unmodified bacteriocin that binds to the cell wall precursor lipid II.


2004 ◽  
Vol 186 (10) ◽  
pp. 3259-3261 ◽  
Author(s):  
Imke Wiedemann ◽  
Roland Benz ◽  
Hans-Georg Sahl

ABSTRACT The antibiotic peptide nisin is the first known lantibiotic that uses a docking molecule within the bacterial cytoplasmic membrane for pore formation. Through specific interaction with the cell wall precursor lipid II, nisin forms defined pores which are stable for seconds and have pore diameters of 2 to 2.5 nm.


2016 ◽  
Vol 198 (22) ◽  
pp. 3045-3059 ◽  
Author(s):  
Meike Baumgart ◽  
Karin Schubert ◽  
Marc Bramkamp ◽  
Julia Frunzke

ABSTRACT Proteins of the LCP (LytR, CpsA, Psr) family have been shown to inherit important roles in bacterial cell wall biosynthesis. However, their exact function in the formation of the complex cell wall structures of the Corynebacteriales , including the prominent pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae , remains unclear. Here, we analyzed the role of the LCP proteins LcpA and LcpB of Corynebacterium glutamicum , both of which localize at regions of nascent cell wall biosynthesis. A strain lacking lcpB did not show any growth-related or morphological phenotype under the tested conditions. In contrast, conditional silencing of the essential lcpA gene resulted in severe growth defects and drastic morphological changes. Compared to the wild-type cell wall, the cell wall of this mutant contained significantly less mycolic acids and a reduced amount of arabinogalactan. In particular, rhamnose, a specific sugar component of the linker that connects arabinogalactan and peptidoglycan, was decreased. Complementation studies of the lcpA -silencing strain with several mutated and truncated LcpA variants suggested that both periplasmic domains are essential for function whereas the cytoplasmic N-terminal part is dispensable. Successful complementation experiments with proteins of M. tuberculosis and C. diphtheriae revealed a conserved function of LCP proteins in these species. Finally, pyrophosphatase activity of LcpA was shown in an in vitro assay. Taken together, our results suggest that LCP proteins are responsible for the transfer of arabinogalactan onto peptidoglycan in actinobacterial species and support a crucial function of a so-far-uncharacterized C-terminal domain (LytR_C domain) which is frequently found at the C terminus of the LCP domain in this prokaryotic phylum. IMPORTANCE About one-third of the world's population is infected with Mycobacterium tuberculosis , and multiple-antibiotic resistance provokes the demand for novel antibiotics. The special cell wall architecture of Corynebacteriales is critical for treatments because it is either a direct target or a barrier that the drug has to cross. Here, we present the analysis of LcpA and LcpB of the closely related Corynebacterium glutamicum , the first of which is an essential protein involved in cell wall biogenesis. Our work provides a comprehensive characterization of the impact of LCP proteins on cell wall biogenesis in this medically and biotechnologically important class of bacteria. Special focus is set on the two periplasmic LcpA domains and their contributions to physiological function.


2014 ◽  
Vol 59 (2) ◽  
pp. 772-781 ◽  
Author(s):  
Daniela Münch ◽  
Ina Engels ◽  
Anna Müller ◽  
Katrin Reder-Christ ◽  
Hildegard Falkenstein-Paul ◽  
...  

ABSTRACTOritavancin is a semisynthetic derivative of the glycopeptide antibiotic chloroeremomycin with activity against Gram-positive pathogens, including vancomycin-resistant staphylococci and enterococci. Compared to vancomycin, oritavancin is characterized by the presence of two additional residues, a hydrophobic 4′-chlorobiphenyl methyl moiety and a 4-epi-vancosamine substituent, which is also present in chloroeremomycin. Here, we show that oritavancin and its des-N-methylleucyl variant (des-oritavancin) effectively inhibit lipid I- and lipid II-consuming peptidoglycan biosynthesis reactionsin vitro. In contrast to that for vancomycin, the binding affinity of oritavancin to the cell wall precursor lipid II appears to involve, in addition to thed-Ala-d-Ala terminus, other species-specific binding sites of the lipid II molecule, i.e., the crossbridge andd-isoglutamine in position 2 of the lipid II stem peptide, both characteristic for a number of Gram-positive pathogens, including staphylococci and enterococci. Using purified lipid II and modified lipid II variants, we studied the impact of these modifications on the binding of oritavancin and compared it to those of vancomycin, chloroeremomycin, and des-oritavancin. Analysis of the binding parameters revealed that additional intramolecular interactions of oritavancin with the peptidoglycan precursor appear to compensate for the loss of a crucial hydrogen bond in vancomycin-resistant strains, resulting in enhanced binding affinity. Augmenting previous findings, we show that amidation of the lipid II stem peptide predominantly accounts for the increased binding of oritavancin to the modified intermediates ending ind-Ala-d-Lac. Corroborating our conclusions, we further provide biochemical evidence for the phenomenon of the antagonistic effects ofmecAandvanAresistance determinants inStaphylococcus aureus, thus partially explaining the low frequency of methicillin-resistantS. aureus(MRSA) acquiring high-level vancomycin resistance.


2012 ◽  
Vol 40 (6) ◽  
pp. 1528-1533 ◽  
Author(s):  
Mohammad R. Islam ◽  
Jun-ichi Nagao ◽  
Takeshi Zendo ◽  
Kenji Sonomoto

Lantibiotics are ribosomally synthesized antimicrobial peptides that commonly target the cell wall precursor lipid II during their antimicrobial mechanism and exert their inhibitory activity by (i) inhibition of cell wall biosynthesis, and (ii) stable pore formation in the target membrane. Type-A(I) (i.e. nisin) and two-component (i.e. lacticin 3147) lantibiotics initially interact with lipid II to stabilize the complex, which then proceeds to inhibit cell wall biosynthesis and pore formation. Type-A(II) (i.e. nukacin ISK-1) and type-B (i.e. mersacidin) lantibiotics also use lipid II as a docking molecule, but can only inhibit cell wall biosynthesis without forming pores. In the present paper, we review the antimicrobial mechanism of different types of lantibiotics, their current progress and future prospect.


2019 ◽  
Author(s):  
Hannah Piepenbreier ◽  
Andre Sim ◽  
Carolin M. Kobras ◽  
Jara Radeck ◽  
Thorsten Mascher ◽  
...  

AbstractBacterial resistance against antibiotics often involves multiple mechanisms that are interconnected to ensure robust protection. So far, the knowledge about underlying regulatory features of those resistance networks is sparse, since they can hardly be determined by experimentation alone. Here, we present the first computational approach to elucidate the interplay between multiple resistance modules against a single antibiotic, and how regulatory network structure allows the cell to respond to and compensate for perturbations of resistance. Based on the response of B. subtilis towards the cell wall synthesis-inhibiting antibiotic bacitracin, we developed a mathematical model that comprehensively describes the protective effect of two well-studied resistance modules (BceAB and BcrC) on the progression of the lipid II cycle. By integrating experimental measurements of expression levels, the model accurately predicts the efficacy of bacitracin against the B. subtilis wild-type as well as mutant strains lacking one or both of the resistance modules. Our study reveals that bacitracin-induced changes in the properties of the lipid II cycle itself control the interplay between the two resistance modules. In particular, variations in the concentrations of UPP, the lipid II cycle intermediate that is targeted by bacitracin, connect the effect of the BceAB transporter and the homeostatic response via BcrC to an overall resistance response. We propose that monitoring changes in pathway properties caused by a stressor allows the cell to fine-tune deployment of multiple resistance systems and may serve as a cost-beneficial strategy to control the overall response towards this stressor.ImportanceAntibiotic resistance poses a major threat to global health and systematic studies to understand the underlying resistance mechanisms are urgently needed. Although significant progress has been made in deciphering the mechanistic basis of individual resistance determinants, many bacterial species rely on the induction of a whole battery of resistance modules, and the complex regulatory networks controlling these modules in response to antibiotic stress are often poorly understood. In this work we combine experiments and theoretical modelling to decipher the resistance network of Bacillus subtilis against bacitracin, which inhibits cell wall biosynthesis in Gram-positive bacteria. In response to bacitracin stress we find a high level of cross-regulation between the two major resistance modules and quantify their effects on bacterial resistance. To rationalize our experimental data, we expand a previously established computational model for the lipid II cycle through incorporating the quantitative action of the resistance modules. This leads us to a systems-level description of the bacitracin stress response network that captures the complex interplay between resistance modules and the essential lipid II cycle of cell wall biosynthesis and accurately predicts the minimal inhibitory bacitracin concentration in all the studied mutants. With this, our study highlights how bacterial resistance emerges from an interlaced network of redundant homeostasis and stress response modules.


2021 ◽  
Author(s):  
Cameron Habib ◽  
Anna Mueller ◽  
Ming Liu ◽  
Jun Zhu ◽  
Tanja Schneider ◽  
...  

AbstractBacterial galactosemia or “galactose death,” triggered by incomplete galactose metabolism, was first discovered in Escherichia coli and Salmonella six decades ago, and later in many other microorganisms, yet the mechanism for the toxicity and subsequent cell death remains unclear. In Bacillus subtilis, galactosemia is manifested by a buildup of uridine-diphosphate-galactose (UDP-Gal) and a strong toxicity phenotype characterized by cell shape abnormality and rapid cell lysis. Here we present evidence that in B. subtilis, the toxicity is due to inhibition of cell wall biosynthesis through interference of the essential glycosyltransferase MurG that carries out lipid II synthesis from lipid I and uridine-diphosphate-N-acetyl-glucosamine (UDP-GlcNAc). Single-molecule imaging reveals real-time inhibition of cell wall biosynthesis and MurG activities in cells exhibiting toxicity. We further show that in vitro, MurG is able to utilize UDP-Gal as a substrate generating a “toxic” lipid II, causing a potential poisoning effect on peptidoglycan crosslinking. Evidence also suggests a similar mechanism in Vibrio cholerae and Staphylococcus aureus. Lastly, a strong synergistic lethality was seen in S. aureus wild-type cells treated with both galactose and sub-lethal doses of cell-wall antibiotics. Our study provides mechanistic explanation of the toxicity associated with bacterial galactosemia and its potential application in antibacterial solutions.SignificanceGalactosemia is a potentially fatal genetic disorder due to incomplete galactose metabolism, found in both eukaryotic and prokaryotic organisms. The molecular mechanisms of galactosemia-associated toxicity remain unclear in all cases. Here we present evidence that in the bacterium Bacillus subtilis, the toxicity is due to interference of an essential glycosyltransferase, MurG, which concerts lipid I to lipid II during peptidoglycan biosynthesis, by a nucleotide sugar derived from galactose metabolism. This interference leads to a halt of cell wall biosynthesis and structural defects causing rapid cell lysis. Our evidence also suggests a similar mechanism in other bacteria such as Staphylococcus aureus and Vibrio cholerae. Our study may help solve the long-time puzzle of bacterial galactosemia first uncovered six decades ago.


2004 ◽  
Vol 48 (8) ◽  
pp. 2888-2896 ◽  
Author(s):  
Thorsten Mascher ◽  
Sara L. Zimmer ◽  
Terry-Ann Smith ◽  
John D. Helmann

ABSTRACT Soil bacteria are among the most prodigious producers of antibiotics. The Bacillus subtilis LiaRS (formerly YvqCE) two-component system is one of several antibiotic-sensing systems that coordinate the genetic response to cell wall-active antibiotics. Upon the addition of vancomycin or bacitracin, LiaRS autoregulates the liaIHGFSR operon. We have characterized the promoter of the lia operon and defined the cis-acting sequences necessary for antibiotic-inducible gene expression. A survey for compounds that act as inducers of the lia promoter revealed that it responds strongly to a subset of cell wall-active antibiotics that interfere with the lipid II cycle in the cytoplasmic membrane (bacitracin, nisin, ramoplanin, and vancomycin). Chemicals that perturb the cytoplasmic membrane, such as organic solvents, are also weak inducers. Thus, the reporter derived from P liaI (the liaI promoter) provides a tool for the detection and classification of antimicrobial compounds.


Sign in / Sign up

Export Citation Format

Share Document