scholarly journals Lipid II-Mediated Pore Formation by the Peptide Antibiotic Nisin: a Black Lipid Membrane Study

2004 ◽  
Vol 186 (10) ◽  
pp. 3259-3261 ◽  
Author(s):  
Imke Wiedemann ◽  
Roland Benz ◽  
Hans-Georg Sahl

ABSTRACT The antibiotic peptide nisin is the first known lantibiotic that uses a docking molecule within the bacterial cytoplasmic membrane for pore formation. Through specific interaction with the cell wall precursor lipid II, nisin forms defined pores which are stable for seconds and have pore diameters of 2 to 2.5 nm.

2008 ◽  
Vol 74 (15) ◽  
pp. 4666-4670 ◽  
Author(s):  
Beatriz Martínez ◽  
Tim Böttiger ◽  
Tanja Schneider ◽  
Ana Rodríguez ◽  
Hans-Georg Sahl ◽  
...  

ABSTRACT Lactococcin 972 (Lcn972) is a nonlantibiotic bacteriocin that inhibits septum biosynthesis in Lactococcus lactis rather than forming pores in the cytoplasmic membrane. In this study, a deeper analysis of the molecular basis of the mode of action of Lcn972 was performed. Of several lipid cell wall precursors, only lipid II antagonized Lcn972 inhibitory activity in vivo. Likewise, Lcn972 only coprecipitated with lipid II micelles. This bacteriocin inhibited the in vitro polymerization of lipid II by the recombinant S. aureus PBP2 and the addition to lipid II of the first glycine catalyzed by FemX. These experiments demonstrate that Lcn972 specifically interacts with lipid II, the substrate of both enzymes. In the presence of Lcn972, nisin pore formation was partially hindered in whole cells. However, binding of Lcn972 to lipid II could not compete with nisin in lipid II-doped 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes, possibly indicating a distinct binding site. The existence of a putative cotarget for Lcn972 activity is discussed in the context of its narrow inhibitory spectrum and the localized action at the division septum. To our knowledge, this is the first unmodified bacteriocin that binds to the cell wall precursor lipid II.


2006 ◽  
Vol 50 (4) ◽  
pp. 1449-1457 ◽  
Author(s):  
Raquel Regina Bonelli ◽  
Tanja Schneider ◽  
Hans-Georg Sahl ◽  
Imke Wiedemann

ABSTRACT The activity of lanthionine-containing peptide antibiotics (lantibiotics) is based on different killing mechanisms which may be combined in one molecule. The prototype lantibiotic nisin inhibits peptidoglycan synthesis and forms pores through specific interaction with the cell wall precursor lipid II. Gallidermin and epidermin possess the same putative lipid II binding motif as nisin; however, both peptides are considerably shorter (22 amino acids, compared to 34 in nisin). We demonstrate that in model membranes, lipid II-mediated pore formation by gallidermin depends on membrane thickness. With intact cells, pore formation was less pronounced than for nisin and occurred only in some strains. In Lactococcus lactis subsp. cremoris HP, gallidermin was not able to release K+, and a mutant peptide, [A12L]gallidermin, in which the ability to form pores was disrupted, was as potent as wild-type gallidermin, indicating that pore formation does not contribute to killing. In contrast, nisin rapidly formed pores in the L. lactis strain; however, it was approximately 10-fold less effective in killing. The superior activity of gallidermin in a cell wall biosynthesis assay may help to explain this high potency. Generally, it appears that the multiple activities of lantibiotics combine differently for individual target strains.


2006 ◽  
Vol 72 (4) ◽  
pp. 2809-2814 ◽  
Author(s):  
Imke Wiedemann ◽  
Tim Böttiger ◽  
Raquel Regina Bonelli ◽  
Tanja Schneider ◽  
Hans-Georg Sahl ◽  
...  

ABSTRACT We analyzed the mode of action of the lantibiotic plantaricin C (PlnC), produced by Lactobacillus plantarum LL441. Compared to the well-characterized type A lantibiotic nisin and type B lantibiotic mersacidin, which are both able to interact with the cell wall precursor lipid II, PlnC displays structural features of both prototypes. In this regard, we found that lipid II plays a key role in the antimicrobial activity of PlnC besides that of pore formation. The pore forming activity of PlnC in whole cells was prevented by shielding lipid II on the cell surface. However, in contrast to nisin, PlnC was not able to permeabilize Lactococcus lactis cells or to form pores in 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes supplemented with 0.1 mol% purified lipid II. This emphasized the different requirements of these lantibiotics for pore formation. Using cell wall synthesis assays, we identified PlnC as a potent inhibitor of (i) lipid II synthesis and (ii) the FemX reaction, i.e., the addition of the first Gly to the pentapeptide side chain of lipid II. As revealed by thin-layer chromatography, both reactions were clearly blocked by the formation of a PlnC-lipid I and/or PlnC-lipid II complex. On the basis of the in vivo and in vitro activities of PlnC shown in this study and the structural lipid II binding motifs described for other lantibiotics, the specific interaction of PlnC with lipid II is discussed.


2012 ◽  
Vol 56 (11) ◽  
pp. 5749-5757 ◽  
Author(s):  
Michaela Wenzel ◽  
Bastian Kohl ◽  
Daniela Münch ◽  
Nadja Raatschen ◽  
H. Bauke Albada ◽  
...  

ABSTRACTMersacidin, gallidermin, and nisin are lantibiotics, antimicrobial peptides containing lanthionine. They show potent antibacterial activity. All three interfere with cell wall biosynthesis by binding lipid II, but they display different levels of interaction with the cytoplasmic membrane. On one end of the spectrum, mersacidin interferes with cell wall biosynthesis by binding lipid II without integrating into bacterial membranes. On the other end of the spectrum, nisin readily integrates into membranes, where it forms large pores. It destroys the membrane potential and causes leakage of nutrients and ions. Gallidermin, in an intermediate position, also readily integrates into membranes. However, pore formation occurs only in some bacteria and depends on membrane composition. In this study, we investigated the impact of nisin, gallidermin, and mersacidin on cell wall integrity, membrane pore formation, and membrane depolarization inBacillus subtilis. The impact of the lantibiotics on the cell envelope was correlated to the proteomic response they elicit inB. subtilis. By drawing on a proteomic response library, including other envelope-targeting antibiotics such as bacitracin, vancomycin, gramicidin S, or valinomycin, YtrE could be identified as the most reliable marker protein for interfering with membrane-bound steps of cell wall biosynthesis. NadE and PspA were identified as markers for antibiotics interacting with the cytoplasmic membrane.


mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Maarten G. K. Ghequire ◽  
Susan K. Buchanan ◽  
René De Mot

ABSTRACT Bacteria host an arsenal of antagonism-mediating molecules to combat for ecologic space. Bacteriocins represent a pivotal group of secreted antibacterial peptides and proteins assisting in this fight, mainly eliminating relatives. Colicin M, a model for peptidoglycan-interfering bacteriocins in Gram-negative bacteria, appears to be part of a set of polymorphic toxins equipped with such a catalytic domain (ColM) targeting lipid II. Diversifying recombination has enabled parasitism of different receptors and has also given rise to hybrid bacteriocins in which ColM is associated with another toxin module. Remarkably, ColM toxins have recruited a diverse array of immunity partners, comprising cytoplasmic membrane-associated proteins with different topologies. Together, these findings suggest that different immunity mechanisms have evolved for ColM, in contrast to bacteriocins with nuclease activities.


1989 ◽  
Vol 35 (2) ◽  
pp. 318-321 ◽  
Author(s):  
A. Gálvez ◽  
E. Valdivia ◽  
M. Martínez ◽  
M. Maqueda

Peptide antibiotic AS-48 exerts a bactericidal mode of action on exponential cultures of Escherichia coli K-12 through a multi-hit kinetics interaction. AS-48 causes a parallel and gradual cessation of all biosynthetic pathways monitored (protein, RNA, DNA, and cell wall synthesis), the rate of incorporation of labeled precursors, the rate of O2 consumption, and cell growth. These effects have been attributed to alterations of cytoplasmic membrane functions.Key words: Escherichia coli, peptide antibiotic, bactericide.


2007 ◽  
Vol 71 (4) ◽  
pp. 620-635 ◽  
Author(s):  
Jean van Heijenoort

SUMMARY This review is an attempt to bring together and critically evaluate the now-abundant but dispersed data concerning the lipid intermediates of the biosynthesis of bacterial peptidoglycan. Lipid I, lipid II, and their modified forms play a key role not only as the specific link between the intracellular synthesis of the peptidoglycan monomer unit and the extracytoplasmic polymerization reactions but also in the attachment of proteins to the bacterial cell wall and in the mechanisms of action of antibiotics with which they form specific complexes. The survey deals first with their detection, purification, structure, and preparation by chemical and enzymatic methods. The recent important advances in the study of transferases MraY and MurG, responsible for the formation of lipids I and II, are reported. Various modifications undergone by lipids I and II are described, especially those occurring in gram-positive organisms. The following section concerns the cellular location of the lipid intermediates and the translocation of lipid II across the cytoplasmic membrane. The great efforts made since 2000 in the study of the glycosyltransferases catalyzing the glycan chain formation with lipid II or analogues are analyzed in detail. Finally, examples of antibiotics forming complexes with the lipid intermediates are presented.


2012 ◽  
Vol 40 (6) ◽  
pp. 1528-1533 ◽  
Author(s):  
Mohammad R. Islam ◽  
Jun-ichi Nagao ◽  
Takeshi Zendo ◽  
Kenji Sonomoto

Lantibiotics are ribosomally synthesized antimicrobial peptides that commonly target the cell wall precursor lipid II during their antimicrobial mechanism and exert their inhibitory activity by (i) inhibition of cell wall biosynthesis, and (ii) stable pore formation in the target membrane. Type-A(I) (i.e. nisin) and two-component (i.e. lacticin 3147) lantibiotics initially interact with lipid II to stabilize the complex, which then proceeds to inhibit cell wall biosynthesis and pore formation. Type-A(II) (i.e. nukacin ISK-1) and type-B (i.e. mersacidin) lantibiotics also use lipid II as a docking molecule, but can only inhibit cell wall biosynthesis without forming pores. In the present paper, we review the antimicrobial mechanism of different types of lantibiotics, their current progress and future prospect.


Sign in / Sign up

Export Citation Format

Share Document