scholarly journals Significant Efficacy of a Single Low Dose of Primaquine Compared to Stand-Alone Artemisinin Combination Therapy in Reducing Gametocyte Carriage in Cambodian Patients with Uncomplicated Multidrug-Resistant Plasmodium falciparum Malaria

2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Amélie Vantaux ◽  
Saorin Kim ◽  
Eakpor Piv ◽  
Sophy Chy ◽  
Laura Berne ◽  
...  

ABSTRACT Since 2012, a single low dose of primaquine (SLDPQ; 0.25 mg/kg of body weight) with artemisinin-based combination therapies has been recommended as the first-line treatment of acute uncomplicated Plasmodium falciparum malaria to interrupt its transmission, especially in low-transmission settings of multidrug resistance, including artemisinin resistance. Policy makers in Cambodia have been reluctant to implement this recommendation due to primaquine safety concerns and a lack of data on its efficacy. In this randomized controlled trial, 109 Cambodians with acute uncomplicated P. falciparum malaria received dihydroartemisinin-piperaquine (DP) alone or combined with SLDPQ on the first treatment day. The transmission-blocking efficacy of SLDPQ was evaluated on days 0, 1, 2, 3, 7, 14, 21, and 28, and recrudescence by reverse transcriptase PCR (RT-PCR) (gametocyte prevalence) and membrane feeding assays with Anopheles minimus mosquitoes (gametocyte infectivity). Without the influence of recrudescent infections, DP-SLDPQ reduced gametocyte carriage 3-fold compared to that achieved with DP. Of 48 patients tested on day 0, only 3 patients were infectious to mosquitoes (∼6%). Posttreatment, three patients were infectious on day 14 (3.5%, 1/29) and on the 1st and 7th days of recrudescence (8.3%, 1/12 for each); this overall low infectivity precluded our ability to assess its transmission-blocking efficacy. Our study confirms the effective gametocyte clearance of SLDPQ when combined with DP in multidrug-resistant P. falciparum infections and the negative impact of recrudescent infections due to poor DP efficacy. Artesunate-mefloquine (ASMQ) has replaced DP, and ASMQ-SLDPQ has been deployed to treat all patients with symptomatic P. falciparum infections to further support the elimination of multidrug-resistant P. falciparum in Cambodia. (This study has been registered at ClinicalTrials.gov under identifier NCT02434952.)

Author(s):  
Kasia Stepniewska ◽  
Georgina S Humphreys ◽  
Bronner P Gonçalves ◽  
Elaine Craig ◽  
Roly Gosling ◽  
...  

Abstract Background Since the World Health Organization recommended single low-dose (0.25 mg/kg) primaquine (PQ) in combination with artemisinin-based combination therapies (ACTs) in areas of low transmission or artemisinin-resistant Plasmodium falciparum, several single-site studies have been conducted to assess efficacy. Methods An individual patient meta-analysis to assess gametocytocidal and transmission-blocking efficacy of PQ in combination with different ACTs was conducted. Random effects logistic regression was used to quantify PQ effect on (1) gametocyte carriage in the first 2 weeks post treatment; and (2) the probability of infecting at least 1 mosquito or of a mosquito becoming infected. Results In 2574 participants from 14 studies, PQ reduced PCR-determined gametocyte carriage on days 7 and 14, most apparently in patients presenting with gametocytemia on day 0 (odds ratio [OR], 0.22; 95% confidence interval [CI], .17–.28 and OR, 0.12; 95% CI, .08–.16, respectively). Rate of decline in gametocyte carriage was faster when PQ was combined with artemether-lumefantrine (AL) compared to dihydroartemisinin-piperaquine (DP) (P = .010 for day 7). Addition of 0.25 mg/kg PQ was associated with near complete prevention of transmission to mosquitoes. Conclusions Transmission blocking is achieved with 0.25 mg/kg PQ. Gametocyte persistence and infectivity are lower when PQ is combined with AL compared to DP.


2019 ◽  
Vol 6 (9) ◽  
Author(s):  
Mariusz Wojnarski ◽  
Chanthap Lon ◽  
Pattaraporn Vanachayangkul ◽  
Panita Gosi ◽  
Somethy Sok ◽  
...  

Abstract Background Recent artemisinin-combination therapy failures in Cambodia prompted a search for alternatives. Atovaquone-proguanil (AP), a safe, effective treatment for multidrug-resistant Plasmodium falciparum (P.f.), previously demonstrated additive effects in combination with artesunate (AS). Methods Patients with P.f. or mixed-species infection (n = 205) in Anlong Veng (AV; n = 157) and Kratie (KT; n = 48), Cambodia, were randomized open-label 1:1 to a fixed-dose 3-day AP regimen +/-3 days of co-administered artesunate (ASAP). Single low-dose primaquine (PQ, 15 mg) was given on day 1 to prevent gametocyte-mediated transmission. Results Polymerase chain reaction–adjusted adequate clinical and parasitological response at 42 days was 90% for AP (95% confidence interval [CI], 82%–95%) and 92% for ASAP (95% CI, 83%–96%; P = .73). The median parasite clearance time was 72 hours for ASAP in AV vs 56 hours in KT (P < .001) and was no different than AP alone. At 1 week postprimaquine, 7% of the ASAP group carried microscopic gametocytes vs 29% for AP alone (P = .0001). Nearly all P.f. isolates had C580Y K13 propeller artemisinin resistance mutations (AV 99%; KT 88%). Only 1 of 14 treatment failures carried the cytochrome bc1 (Pfcytb) atovaquone resistance mutation, which was not present at baseline. P.f. isolates remained atovaquone sensitive in vitro but cycloguanil resistant, with a triple P.f. dihydrofolate reductase mutation. Conclusions Atovaquone-proguanil remained marginally effective in Cambodia (≥90%) with minimal Pfcytb mutations observed. Treatment failures in the presence of ex vivo atovaquone sensitivity and adequate plasma levels may be attributable to cycloguanil and/or artemisinin resistance. Artesunate co-administration provided little additional blood-stage efficacy but reduced post-treatment gametocyte carriage in combination with AP beyond single low-dose primaquine.


2013 ◽  
Vol 57 (7) ◽  
pp. 2948-2954 ◽  
Author(s):  
Naman K. Shah ◽  
Allan Schapira ◽  
Jonathan J. Juliano ◽  
Bina Srivastava ◽  
Pia D. M. MacDonald ◽  
...  

ABSTRACTArtemisinin combination therapies eliminate immaturePlasmodium falciparumgametocytes but not mature gametocytes, which may persist for up to 1 month posttreatment. A single dose of primaquine, which is inexpensive and effective against mature gametocytes, could be added to further reduce the potential for posttreatment parasite transmission. Currently, we have few data regarding the effectiveness or safety of doing so. We collected data from 21 therapeutic efficacy trials of the National Antimalarial Drug Resistance Monitoring System of India conducted during 2009 to 2010, wherein 9 sites used single-dose primaquine (0.75 mg/kg of body weight) administered on day 2 along with artesunate plus sulfadoxine-pyrimethamine (AS+SP) while 12 did not. We estimated the effect of primaquine on posttreatment gametocyte clearance and the total number of gametocyte-weeks as determined by microscopy. We compared the median area under the curve for gametocyte density and reported adverse events. One thousand three hundred thirty-five patients completed the antimalarial drug treatment. Adjusting for region, primaquine increased the rate of gametocyte clearance (hazard ratio, 1.9; 95% confidence interval [CI], 1.1 to 3.3), prevented 45% (95% CI, 19 to 62) of posttreatment gametocyte-weeks, and decreased the area under the gametocyte density curve over the 28-day follow-up compared to AS+SP alone (Pvalue = 0.01). The results were robust to other adjustment sets, and the estimated effect of primaquine increased during sensitivity analysis on the measurement of exposure time. No serious adverse events were detected. In conclusion, the addition of primaquine to AS+SP was effective in reducing the posttreatment presence ofP. falciparumgametocytes. Primaquine was well tolerated and could be administered along with an artemisinin combination therapy as the first-line therapy.


2014 ◽  
Vol 58 (10) ◽  
pp. 5831-5840 ◽  
Author(s):  
Charlotte A. Lanteri ◽  
Suwanna Chaorattanakawee ◽  
Chanthap Lon ◽  
David L. Saunders ◽  
Wiriya Rutvisuttinunt ◽  
...  

ABSTRACTNovel synthetic endoperoxides are being evaluated as new components of artemisinin combination therapies (ACTs) to treat artemisinin-resistantPlasmodium falciparummalaria. We conducted blindedex vivoactivity testing of fully synthetic (OZ78 and OZ277) and semisynthetic (artemisone, artemiside, artesunate, and dihydroartemisinin) endoperoxides in the histidine-rich protein 2 enzyme-linked immunosorbent assay against 200P. falciparumisolates from areas of artemisinin-resistant malaria in western and northern Cambodia in 2009 and 2010. The order of potency and geometric mean (GM) 50% inhibitory concentrations (IC50s) were as follows: artemisone (2.40 nM) > artesunate (8.49 nM) > dihydroartemisinin (11.26 nM) > artemiside (15.28 nM) > OZ277 (31.25 nM) > OZ78 (755.27 nM).Ex vivoactivities of test endoperoxides positively correlated with dihydroartemisinin and artesunate. The isolates were over 2-fold less susceptible to dihydroartemisinin than the artemisinin-sensitiveP. falciparumW2 clone and showed sensitivity comparable to those with test endoperoxides and artesunate, with isolate/W2 IC50susceptibility ratios of <2.0. All isolates hadP. falciparumchloroquine resistance transporter mutations, with negative correlations in sensitivity to endoperoxides and chloroquine. The activities of endoperoxides (artesunate, dihydroartemisinin, OZ277, and artemisone) significantly correlated with that of the ACT partner drug, mefloquine. Isolates had mutations associated with clinical resistance to mefloquine, with 35% prevalence ofP. falciparummultidrug resistance gene 1 (pfmdr1) amplification and 84.5% occurrence of thepfmdr1Y184F mutation. GM IC50s for mefloquine, lumefantrine, and endoperoxides (artesunate, dihydroartemisinin, OZ277, OZ78, and artemisone) correlated withpfmdr1copy number. Given that current ACTs are failing potentially from reduced sensitivity to artemisinins and partner drugs, newly identified mutations associated with artemisinin resistance reported in the literature andpfmdr1mutations should be examined for their combined contributions to emerging ACT resistance.


2016 ◽  
Vol 60 (9) ◽  
pp. 5167-5174 ◽  
Author(s):  
Marina Chavchich ◽  
Karin Van Breda ◽  
Kerryn Rowcliffe ◽  
Thierry T. Diagana ◽  
Michael D. Edstein

ABSTRACTIn vitrodrug treatment with artemisinin derivatives, such as dihydroartemisinin (DHA), results in a temporary growth arrest (i.e., dormancy) at an early ring stage inPlasmodium falciparum. This response has been proposed to play a role in the recrudescence ofP. falciparuminfections following monotherapy with artesunate and may contribute to the development of artemisinin resistance inP. falciparummalaria. We demonstrate here that artemether does induce dormant rings, a finding which further supports the class effect of artemisinin derivatives in inducing the temporary growth arrest ofP. falciparumparasites. In contrast and similarly to lumefantrine, the novel and fast-acting spiroindolone compound KAE609 does not induce growth arrest at the early ring stage ofP. falciparumand prevents the recrudescence of DHA-arrested rings at a low concentration (50 nM). Our findings, together with previous clinical data showing that KAE609 is active against artemisinin-resistant K13 mutant parasites, suggest that KAE609 could be an effective partner drug with a broad range of antimalarials, including artemisinin derivatives, in the treatment of multidrug-resistantP. falciparummalaria.


2015 ◽  
Vol 59 (8) ◽  
pp. 4631-4643 ◽  
Author(s):  
Suwanna Chaorattanakawee ◽  
David L. Saunders ◽  
Darapiseth Sea ◽  
Nitima Chanarat ◽  
Kritsanai Yingyuen ◽  
...  

ABSTRACTCambodia's first-line artemisinin combination therapy, dihydroartemisinin-piperaquine (DHA-PPQ), is no longer sufficiently curative against multidrug-resistantPlasmodium falciparummalaria at some Thai-Cambodian border regions. We report recent (2008 to 2013) drug resistance trends in 753 isolates from northern, western, and southern Cambodia by surveying forex vivodrug susceptibility and molecular drug resistance markers to guide the selection of an effective alternative to DHA-PPQ. Over the last 3 study years, PPQ susceptibility declined dramatically (geomean 50% inhibitory concentration [IC50] increased from 12.8 to 29.6 nM), while mefloquine (MQ) sensitivity doubled (67.1 to 26 nM) in northern Cambodia. These changes in drug susceptibility were significantly associated with a decreased prevalence ofP. falciparummultidrug resistance 1 gene (Pfmdr1) multiple copy isolates and coincided with the timing of replacing artesunate-mefloquine (AS-MQ) with DHA-PPQ as the first-line therapy. Widespread chloroquine resistance was suggested by all isolates being of theP. falciparumchloroquine resistance transporter gene CVIET haplotype. Nearly all isolates collected from the most recent years hadP. falciparumkelch13mutations, indicative of artemisinin resistance.Ex vivobioassay measurements of antimalarial activity in plasma indicated 20% of patients recently took antimalarials, and their plasma had activity (median of 49.8 nM DHA equivalents) suggestive of substantialin vivodrug pressure. Overall, our findings suggest DHA-PPQ failures are associated with emerging PPQ resistance in a background of artemisinin resistance. The observed connection between drug policy changes and significant reduction in PPQ susceptibility with mitigation of MQ resistance supports reintroduction of AS-MQ, in conjunction with monitoring of theP. falciparummdr1copy number, as a stop-gap measure in areas of DHA-PPQ failure.


2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Theerayot Kobasa ◽  
Eldin Talundzic ◽  
Rungniran Sug-aram ◽  
Patcharida Boondat ◽  
Ira F. Goldman ◽  
...  

ABSTRACT Artemisinin-based combination therapy (ACT) is the most effective and widely used treatment for uncomplicated Plasmodium falciparum malaria and is a cornerstone for malaria control and prevention globally. Resistance to artemisinin derivatives has been confirmed in the Greater Mekong Subregion (GMS) and manifests as slow parasite clearance in patients and reduced ring stage susceptibility to artemisinins in survival assays. The P. falciparum kelch13 gene mutations associated with artemisinin-resistant parasites are now widespread in the GMS. We genotyped 277 samples collected during an observational study from 2012 to 2016 from eight provinces in Thailand to identify P. falciparum kelch13 mutations. The results were combined with previously reported genotyping results from Thailand to construct a map illustrating the evolution of P. falciparum kelch13 mutations from 2007 to 2016 in that country. Different mutant alleles were found in strains with different geographical origins. The artemisinin resistance-conferring Y493H and R539T mutations were detected mainly in eastern Thailand (bordering Cambodia), while P574L was found only in western Thailand and R561H only in northwestern Thailand. The C580Y mutation was found across the entire country and was nearing fixation along the Thai-Cambodia border. Overall, the prevalence of artemisinin resistance mutations increased over the last 10 years across Thailand, especially along the Thai-Cambodia border. Molecular surveillance and therapeutic efficacy monitoring should be intensified in the region to further assess the extent and spread of artemisinin resistance.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Katharine A. Collins ◽  
Thomas Rückle ◽  
Suzanne Elliott ◽  
Louise Marquart ◽  
Emma Ballard ◽  
...  

ABSTRACT DSM265 is a novel antimalarial drug in clinical development that acts as a selective inhibitor of Plasmodium dihydroorotate dehydrogenase. In a previous phase 1b study, a single 150-mg dose of DSM265 showed partial efficacy against experimentally induced blood-stage Plasmodium falciparum malaria (IBSM). Pharmacokinetic/pharmacodynamic modeling predicted a human efficacious dose of 340 mg. The primary objectives of the current study were to determine the safety and efficacy of a single oral 400-mg dose of DSM265 against P. falciparum in the IBSM model. Eight healthy participants were inoculated intravenously with 2,800 parasites and treated with DSM265 7 days later. Unexpectedly, one participant did not develop parasitemia during the study. All other participants developed parasitemia, with the complete clearance of asexual parasites occurring following DSM265 treatment. All seven subjects also became gametocytemic. The secondary objectives were to investigate the gametocytocidal and transmission-blocking activity of a second 400-mg dose of DSM265, which was administered 23 days after inoculation. Gametocytes were not cleared by the second dose of DSM265, and transmission-blocking activity could not be determined due to low gametocyte densities. Three DSM265-related adverse events occurred, including a cutaneous rash in one subject on the day of the second DSM265 dose. The results obtained in this study support the prediction of the efficacious dose of DSM265 and provide further evidence that DSM265 is generally safe and well tolerated. In addition, this study confirms preclinical data indicating that DSM265 permits the development and maturation of gametocytes and does not clear mature circulating gametocytes. (This study has been registered at ClinicalTrials.gov under identifier NCT02573857.)


Sign in / Sign up

Export Citation Format

Share Document