scholarly journals Rezafungin In Vitro Activity against Contemporary Nordic Clinical Candida Isolates and Candida auris Determined by the EUCAST Reference Method

2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Marie Helleberg ◽  
Karin Meinike Jørgensen ◽  
Rasmus Krøger Hare ◽  
Raluca Datcu ◽  
Anuradha Chowdhary ◽  
...  

ABSTRACT Rezafungin (formerly CD101) is a novel echinocandin in clinical development. EUCAST epidemiological cutoff values (ECOFFs) have not yet been established. We determined the in vitro activity of rezafungin and comparators against 1,293 Nordic yeast isolates and 122 Indian Candida auris isolates and established single-center wild-type upper limits (WT-UL). The isolates (19 Candida spp. and 13 other yeast species) were identified using Chromagar; matrix-assisted laser desorption ionization–time of flight (MALDI-TOF); and, when needed, internal transcribed spacer sequencing. EUCAST E.Def 7.3.1 susceptibility testing included rezafungin, anidulafungin, micafungin, amphotericin B, and fluconazole. WT-UL were established following EUCAST principles for visual and statistical ECOFF setting. fks target genes were sequenced for rezafungin non-wild-type isolates. EUCAST clinical breakpoints for fungi version 9.0 were adopted for susceptibility classification. Rezafungin had species-specific activity similar to that of anidulafungin and micafungin. On a milligram-per-liter basis, rezafungin was overall less active than anidulafungin and micafungin but equally or more active than fluconazole and amphotericin B against the most common Candida species, except C. parapsilosis. We identified 37 (3.1%) rezafungin non-wild-type isolates of C. albicans (1.9%), C. glabrata (3.0%), C. tropicalis (2.7%), C. dubliniensis (2.9%), C. krusei (1.2%), and C. auris (14.8%). Alterations in Fks hot spots were found in 26/26 Nordic and 8/18 non-wild-type C. auris isolates. Rezafungin displayed broad in vitro activity against Candida spp., including C. auris. Adopting WT-UL established here, few Nordic strains, but a significant proportion of C. auris isolates, had elevated MICs with mutations in fks target genes that conferred echinocandin cross-resistance. fks1 mutations raised rezafungin MICs notably less than anidulafungin and micafungin MICs in C. auris.

2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Maiken Cavling Arendrup ◽  
Anuradha Chowdhary ◽  
Karen M. T. Astvad ◽  
Karin Meinike Jørgensen

ABSTRACT APX001A is the active moiety of the first-in-class drug candidate APX001. So far, most susceptibility testing studies have examined ≤30 isolates/species, and only one used the EUCAST method. Here, we investigated the in vitro activity of APX001A and five comparators against 540 candidemia and 122 C. auris isolates. Isolates (17 Candida and 3 yeast species) were identified using CHROMagar, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) and, when needed, internal transcribed space (ITS) sequencing. EUCAST E.Def 7.3.1 susceptibility testing included APX001A, amphotericin B, anidulafungin, micafungin, fluconazole, and voriconazole. Wild-type upper limits (WT-UL) were established following the EUCAST principles for epidemiological cutoff value setting for APX001A, allowing classification as wild type (WT) or non-WT. APX001A MIC50 values (mg/liter) were as follows: Candida albicans, Candida dubliniensis, and Candida tropicalis, 0.004 to 0.008; Candida parapsilosis and Candida auris, 0.016; Candida glabrata, 0.06; and Candida krusei, >0.5. APX001A MICs against the rare species varied from ≤0.0005 (C. pelliculosa) to >0.5 (Candida norvegensis). APX001A was equally or more active in vitro than the comparators against all species except C. krusei and C. norvegensis. Four isolates were APX001A non-WT; all were fluconazole resistant. A correlation was observed between APX001A and fluconazole MICs across all species except Candida guilliermondii and C. auris, and when comparing high and low fluconazole MIC isolates of C. albicans, C. dubliniensis, C. glabrata, C. tropicalis, and C. auris. APX001A showed promising in vitro activity against most Candida and other yeast species, including C. auris, compared to five comparators. WT-UL were suggested for the common species, and a new and unexplained correlation to fluconazole susceptibility was observed.


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
A. L. Bidaud ◽  
F. Botterel ◽  
A. Chowdhary ◽  
E. Dannaoui

ABSTRACT Candida auris is an emerging, multidrug-resistant pathogen responsible for invasive hospital-acquired infections. Flucytosine is an effective anti-Candida species drug, but which cannot be used as a monotherapy because of the risk of development of resistant mutants during treatment. It is, therefore, noteworthy to test possible combinations with flucytosine that may have a synergistic interaction. In this study, we determined the in vitro interaction between flucytosine and amphotericin B, micafungin, or voriconazole. These combinations have been tested against 15 C. auris isolates. The MIC ranges (geometric mean [Gmean]) of flucytosine, amphotericin B, micafungin, and voriconazole were 0.125 to 1 μg/ml (0.42 μg/ml), 0.25 to 1 μg/ml (0.66 μg/ml), 0.125 to 0.5 μg/ml (0.3 μg/ml), and 0.03 to 4 μg/ml (1.05 μg/ml), respectively. When tested in combination, indifferent interactions were mostly observed with fractional inhibitory concentration index values from 0.5 to 1, 0.31 to 1.01, and 0.5 to 1.06 for the combinations of flucytosine with amphotericin B, micafungin, and voriconazole, respectively. A synergy was observed for the strain CBS 10913 from Japan. No antagonism was observed for any combination. The combination of flucytosine with amphotericin B or micafungin may be relevant for the treatment of C. auris infections.


2012 ◽  
Vol 56 (8) ◽  
pp. 4223-4232 ◽  
Author(s):  
Claire M. Hull ◽  
Josie E. Parker ◽  
Oliver Bader ◽  
Michael Weig ◽  
Uwe Gross ◽  
...  

ABSTRACTWe identified a clinical isolate ofCandida glabrata(CG156) exhibiting flocculent growth and cross-resistance to fluconazole (FLC), voriconazole (VRC), and amphotericin B (AMB), with MICs of >256, >256, and 32 μg ml−1, respectively. Sterol analysis using gas chromatography-mass spectrometry (GC-MS) revealed that CG156 was a sterol 14α-demethylase (Erg11p) mutant, wherein 14α-methylated intermediates (lanosterol was >80% of the total) were the only detectable sterols.ERG11sequencing indicated that CG156 harbored a single-amino-acid substitution (G315D) which nullified the function of native Erg11p. In heterologous expression studies using a doxycycline-regulatableSaccharomyces cerevisiae erg11strain, wild-typeC. glabrataErg11p fully complemented the function ofS. cerevisiaesterol 14α-demethylase, restoring growth and ergosterol synthesis in recombinant yeast; mutated CG156 Erg11p did not. CG156 was culturable using sterol-free, glucose-containing yeast minimal medium (glcYM). However, when grown on sterol-supplementedglcYM (with ergosta 7,22-dienol, ergosterol, cholestanol, cholesterol, Δ7-cholestenol, or desmosterol), CG156 cultures exhibited shorter lag phases, reached higher cell densities, and showed alterations in cellular sterol composition. Unlike comparator isolates (harboring wild-typeERG11) that became less sensitive to FLC and VRC when cultured on sterol-supplementedglcYM, facultative sterol uptake by CG156 did not affect its azole-resistant phenotype. Conversely, CG156 grown usingglcYM with ergosterol (or with ergosta 7,22-dienol) showed increased sensitivity to AMB; CG156 grown usingglcYM with cholesterol (or with cholestanol) became more resistant (MICs of 2 and >64 μg AMB ml−1, respectively). Our results provide insights into the consequences of sterol uptake and metabolism on growth and antifungal resistance inC. glabrata.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Maiken Cavling Arendrup ◽  
Anuradha Chowdhary ◽  
Karin Meinike Jørgensen ◽  
Joseph Meletiadis

ABSTRACT Fosmanogepix is a novel prodrug in a new class of antifungal agents. Manogepix is the active moiety. We evaluated the CLSI and EUCAST MICs of manogepix and eight comparators against Candida auris. CLSI M27-A3 susceptibility testing of manogepix was performed for 122 C. auris isolates and compared to CLSI and EUCAST MICs for manogepix and eight comparators. Differences and agreement were calculated for each compound. Wild-type upper limits (WT-ULs; the upper MIC where the wild-type distribution ends) for manogepix and correlations with other drugs’ MICs were determined. Manogepix MICs (CLSI/EUCAST [mg/liter]) and WT-ULs were as follows: MIC50s, 0.008/0.016; MIC90s, 0.03/0.03; ranges, 0.001 to 0.25/0.001 to 0.125; 97.5% and 99% WT-ULs, 0.03/0.125 and 0.06/0.125, respectively. The manogepix CLSI/EUCAST MIC distributions spanned 9/8 dilutions, respectively. Significant correlation was found for all azoles, particularly fluconazole (r = 0.22 to 0.74, P < 0.05). Isolates with EUCAST manogepix MICs of ≤0.004 had 7.6-/10.2-fold-lower fluconazole CLSI/EUCAST MICs than the remaining isolates that had higher manogepix MICs. The highest essential agreement between CLSI and EUCAST results was observed for manogepix and fluconazole, with a median difference of −1 to 0 2-fold dilutions, 90th percentile absolute difference of 1, and 90 to 92% and 98 to 100% agreement within ±1 and ±2 dilutions. The lowest agreements within ±1 and ±2 dilutions were found for isavuconazole and anidulafungin (44 to 50% and 69 to 76%). The correlation between CLSI and EUCAST manogepix MICs against C. auris was excellent. Differential MICs were found, and these correlated with fluconazole MICs, suggesting that the C. auris population is a mix of wild-type isolates and non-wild-type isolates with low-grade manogepix MIC elevation, probably involving efflux pump expression. However, manogepix was the most potent agent against C. auris in this in vitro study.


2020 ◽  
Vol 64 (11) ◽  
Author(s):  
YanChun Zhu ◽  
Shannon Kilburn ◽  
Mili Kapoor ◽  
Sudha Chaturvedi ◽  
Karen Joy Shaw ◽  
...  

ABSTRACT An ongoing Candida auris outbreak in the New York metropolitan area is the largest recorded to date in North America. Laboratory surveillance revealed NY C. auris isolates are resistant to fluconazole, with variable resistance to other currently used broad-spectrum antifungal drugs, and that several isolates are panresistant. Thus, there is an urgent need for new drugs with a novel mechanism of action to combat the resistance challenge. Manogepix (MGX) is a first-in-class agent that targets the fungal Gwt1 enzyme. The prodrug fosmanogepix is currently in phase 2 clinical development for the treatment of fungal infections. We evaluated the susceptibility of 200 New York C. auris isolates to MGX and 10 comparator drugs using CLSI methodology. MGX demonstrated lower MICs than comparators (MIC50 and MIC90, 0.03 mg/liter; range, 0.004 to 0.06 mg/liter). The local epidemiological cutoff value (ECV) for MGX indicated all C. auris isolates were within the population of wild-type (WT) strains; 0.06 mg/liter defines the upper limit of wild type (UL-WT). MGX was 8- to 32-fold more active than the echinocandins, 16- to 64-fold more active than the azoles, and 64-fold more active than amphotericin B. No differences were found in the MGX or comparators’ MIC50, MIC90, or geometric mean (GM) values when subsets of clinical, surveillance, and environmental isolates were evaluated. The range of MGX MIC values for six C. auris panresistant isolates was 0.008 to 0.015 mg/liter, and the median and mode MIC values were 0.015 mg/liter, demonstrating that MGX retains activity against these isolates. These data support further clinical evaluation of fosmanogepix for the treatment of C. auris infections, including highly resistant isolates.


2013 ◽  
Vol 57 (10) ◽  
pp. 4769-4781 ◽  
Author(s):  
A. Forastiero ◽  
A. C. Mesa-Arango ◽  
A. Alastruey-Izquierdo ◽  
L. Alcazar-Fuoli ◽  
L. Bernal-Martinez ◽  
...  

ABSTRACTCandida tropicalisranks between third and fourth amongCandidaspecies most commonly isolated from clinical specimens. Invasive candidiasis and candidemia are treated with amphotericin B or echinocandins as first-line therapy, with extended-spectrum triazoles as acceptable alternatives.Candida tropicalisis usually susceptible to all antifungal agents, although several azole drug-resistant clinical isolates are being reported. However,C. tropicalisresistant to amphotericin B is uncommon, and only a few strains have reliably demonstrated a high level of resistance to this agent. The resistance mechanisms operating inC. tropicalisstrains isolated from clinical samples showing resistance to azole drugs alone or with amphotericin B cross-resistance were elucidated. Antifungal drug resistance was related to mutations of the azole target (Erg11p) with or without alterations of the ergosterol biosynthesis pathway. The antifungal drug resistance shownin vitrocorrelated very well with the results obtainedin vivousing the model hostGalleria mellonella. Using this panel of strains, theG. mellonellamodel system was validated as a simple, nonmammalian minihost model that can be used to studyin vitro-in vivocorrelation of antifungals inC. tropicalis. The development inC. tropicalisof antifungal drug resistance with different mechanisms during antifungal treatment has potential clinical impact and deserves specific prospective studies.


2013 ◽  
Vol 57 (4) ◽  
pp. 1944-1947 ◽  
Author(s):  
Sarah S. Gonçalves ◽  
Alberto M. Stchigel ◽  
Josep Cano ◽  
Josep Guarro ◽  
Arnaldo L. Colombo

ABSTRACTThein vitroantifungal susceptibility of 77 isolates belonging to different clinically relevant species ofAspergillussectionFlavi, including those of different phylogenetic clades ofA. flavus, was tested for nine antifungal agents using a microdilution reference method (CLSI, M38-A2). Terbinafine and the echinocandins demonstrated lower MICs/MECs for all species evaluated, followed by posaconazole. Amphotericin B showed MICs ≥ 2 μg/ml for 38 (49.4%) of the 77 isolates tested.


2015 ◽  
Vol 60 (1) ◽  
pp. 532-536 ◽  
Author(s):  
Maiken Cavling Arendrup ◽  
Rasmus Hare Jensen ◽  
Manuel Cuenca-Estrella

ABSTRACTASP2397 is a new compound with a novel and as-yet-unknown target different from that of licensed antifungal agents. It has activity againstAspergillusandCandida glabrata. We compared itsin vitroactivity against wild-type and azole-resistantA. fumigatusandA. terreusisolates with that of amphotericin B, itraconazole, posaconazole, and voriconazole. Thirty-four isolates, including 4 wild-typeA. fumigatusisolates, 24A. fumigatusisolates with alterations in CYP51A TR/L98H (5 isolates), M220 (9 isolates), G54 (9 isolates), and HapE (1 isolate), andA. terreusisolates (2 wild-type isolates and 1 isolate with an M217I CYP51A alteration), were analyzed. EUCAST E.Def 9.2 and CLSI M38-A2 MIC susceptibility testing was performed. ASP2397 MIC50values (in milligrams per liter, with MIC ranges in parentheses) determined by EUCAST and CLSI were 0.5 (0.25 to 1) and 0.25 (0.06 to 0.25) againstA. fumigatusCYP51A wild-type isolates and were similarly 0.5 (0.125 to >4) and 0.125 (0.06 to >4) against azole-resistantA. fumigatusisolates, respectively. These values were comparable to those for amphotericin B, which were 0.25 (0.125 to 0.5) and 0.25 (0.125 to 0.25) against wild-type isolates and 0.25 (0.125 to 1) and 0.25 (0.125 to 1) against isolates with azole resistance mechanisms, respectively. In contrast, MICs for the azole compounds were elevated and highest for itraconazole: >4 (1 to >4) and 4 (0.5 to >4) against isolates with azole resistance mechanisms compared to 0.125 (0.125 to 0.25) and 0.125 (0.06 to 0.25) against wild-type isolates, respectively. ASP2397 was active againstA. terreusCYP51A wild-type isolates (MIC 0.5 to 1), whereas MICs of both azole and ASP2397 were elevated for the mutant isolate. ASP2397 displayedin vitroactivity againstA. fumigatusandA. terreusisolates which was independent of the presence or absence of azole target gene resistance mutations inA. fumigatus. The findings are promising at a time when azole-resistantA. fumigatusis emerging globally.


2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Maiken Cavling Arendrup ◽  
Karin Meinike Jørgensen ◽  
Rasmus Krøger Hare ◽  
Anuradha Chowdhary

ABSTRACT Ibrexafungerp (SCY-078) is a novel first-in-class antifungal agent targeting glucan synthase. Candida auris is an emerging multidrug-resistant species that has caused outbreaks on five continents. We investigated the in vitro activity of ibrexafungerp against C. auris by applying EUCAST E.Def 7.3.1 methodology. C. albicans and C. glabrata, as well as anidulafungin, micafungin, amphotericin B, fluconazole, voriconazole, and isavuconazole, were included as comparators. Three C. auris reference strains (CBS12372, CBS12373, and CBS10913) and 122 C. auris, 16 C. albicans, and 16 C. glabrata isolates were evaluated. C. albicans ATCC 64548, C. parapsilosis ATCC 22019, and C. krusei ATCC 6258 served as quality control strains. Echinocandin-resistant isolates were fks sequenced. MIC ranges and modal MIC and MIC50 values were determined. Wild-type upper limits (the upper MIC value where the wild-type distribution ends) were determined according to EUCAST principles for setting ECOFFs. Nine repetitions of three QC strains and MICs for C. albicans and C. glabrata yielded narrow MIC ranges with modal MICs in agreement with established EUCAST modal MICs, confirming a robust test performance. The ibrexafungerp MICs against C. auris isolates displayed a Gaussian distribution with a modal MIC (range) of 0.5 mg/liter (0.06 to 2 mg/liter), suggesting uniform susceptibility. Of 122 isolates, 8 were echinocandin resistant and harbored the S639F Fks1 alteration. All but one were fluconazole resistant, and the MIC distributions for voriconazole and isavuconazole were multimodal confirming variable susceptibility. Ibrexafungerp demonstrated promising activity against C. auris, including isolates resistant to echinocandins and/or other agents. The MICs were similar to those reported for the Clinical and Laboratory Standards Institute method, suggesting that a common clinical breakpoint may be appropriate.


2013 ◽  
Vol 13 (1) ◽  
pp. 127-142 ◽  
Author(s):  
Andrea Lohberger ◽  
Alix T. Coste ◽  
Dominique Sanglard

ABSTRACTAzoles are widely used in antifungal therapy in medicine. Resistance to azoles can occur inCandida albicansprincipally by overexpression of multidrug transporter geneCDR1,CDR2, orMDR1or by overexpression ofERG11, which encodes the azole target. The expression of these genes is controlled by the transcription factors (TFs)TAC1(involved in the control ofCDR1andCDR2),MRR1(involved in the control ofMDR1), andUPC2(involved in the control ofERG11). Several gain-of-function (GOF) mutations are present in hyperactive alleles of these TFs, resulting in the overexpression of target genes. While these mutations are beneficial toC. albicanssurvival in the presence of the antifungal drugs, their effects could potentially alter the fitness and virulence ofC. albicansin the absence of the selective drug pressure. In this work, the effect of GOF mutations onC. albicansvirulence was addressed in a systemic model of intravenous infection by mouse survival and kidney fungal burden assays. We engineered a set of strains with identical genetic backgrounds in which hyperactive alleles were reintroduced in one or two copies at their genomic loci. The results obtained showed that neitherTAC1norMRR1GOF mutations had a significant effect onC. albicansvirulence. In contrast, the presence of two hyperactiveUPC2alleles inC. albicansresulted in a significant decrease in virulence, correlating with diminished kidney colonization compared to that by the wild type. In agreement with the effect on virulence, the decreased fitness of an isolate withUPC2hyperactive alleles was observed in competition experiments with the wild typein vivobut notin vitro. Interestingly,UPC2hyperactivity delayed filamentation ofC. albicansafter phagocytosis by murine macrophages, which may at least partially explain the virulence defects. Combining theUPC2GOF mutation with another hyperactive TF did not compensate for the negative effect ofUPC2on virulence. In conclusion, among the major TFs involved in azole resistance, onlyUPC2had a negative impact on virulence and fitness, which may therefore have consequences for the epidemiology of antifungal resistance.


Sign in / Sign up

Export Citation Format

Share Document