scholarly journals In VitroActivity of Antiretroviral Drugs against Plasmodium falciparum

2011 ◽  
Vol 55 (11) ◽  
pp. 5073-5077 ◽  
Author(s):  
Christian Nsanzabana ◽  
Philip J. Rosenthal

ABSTRACTMalaria and HIV infection are both very common in many developing countries. With the increasing availability of therapy for HIV infection, it was of interest to determine whether antiretroviral drugs exert antimalarial effects. We therefore tested thein vitroactivity of 19 antiretroviral drugs against the W2 and 3D7 strains ofPlasmodium falciparumat concentrations up to 50 μM. None of 5 tested nucleoside reverse transcriptase inhibitors demonstrated activity. Two nonnucleoside reverse transcriptase inhibitors, efavirenz (mean 50% inhibitory concentration [IC50] of 22 to 30 μM against the two strains) and etravirine (3.1 to 3.4 μM), were active; nevirapine was not active. Also active were the fusion inhibitor enfuvirtide (6.2 to 7.9 μM) and the entry inhibitor maraviroc (15 to 21 μM). Raltegravir was not active. However, for all active drugs mentioned above, the IC50s were considerably greater than the concentrations achieved with standard dosing. The effects most likely to be clinically relevant were with HIV protease inhibitors. Of the tested compounds, activity was seen with lopinavir (2.7 to 2.9 μM), atazanavir (3.3 to 13.0 μM), saquinavir (5.0 to 12.1 μM), nelfinavir (6.5 to 12.1 μM), ritonavir (9.5 to 10.9 μM), tipranavir (15.5 to 22.3 μM), and amprenavir (28.1 to 40.8) but not darunavir. Lopinavir was active at levels well below those achieved with standard dosing of coformulated lopinavir-ritonavir. Lopinavir also demonstrated modest synergy with the antimalarial lumefantrine (mean fractional inhibitory concentration index of 0.66 for W2 and 0.53 for 3D7). Prior data showed that lopinavir-ritonavir also extends the pharmacokinetic exposure of lumefantrine. Thus, when used to treat HIV infection, lopinavir-ritonavir may have clinically relevant antimalarial activity and also enhance the activity of antimalarials.

2009 ◽  
Vol 54 (3) ◽  
pp. 1334-1337 ◽  
Author(s):  
Christopher L. Peatey ◽  
Katherine T. Andrews ◽  
Nina Eickel ◽  
Timothy MacDonald ◽  
Alice S. Butterworth ◽  
...  

ABSTRACT The stage-specific antimalarial activities of a panel of antiretroviral protease inhibitors (PIs), including two nonpeptidic PIs (tipranavir and darunavir), were tested in vitro against Plasmodium falciparum. While darunavir demonstrated limited antimalarial activity (effective concentration [EC50], >50 μM), tipranavir was active at clinically relevant concentrations (EC50, 12 to 21 μM). Saquinavir, lopinavir, and tipranavir preferentially inhibited the growth of mature asexual-stage parasites (24 h postinvasion). While all of the PIs tested inhibited gametocytogenesis, tipranavir was the only one to exhibit gametocytocidal activity.


2020 ◽  
Vol 27 (5) ◽  
pp. 760-794 ◽  
Author(s):  
Rita Melo ◽  
Agostinho Lemos ◽  
António J. Preto ◽  
Beatriz Bueschbell ◽  
Pedro Matos-Filipe ◽  
...  

Paediatric Acquired ImmunoDeficiency Syndrome (AIDS) is a life-threatening and infectious disease in which the Human Immunodeficiency Virus (HIV) is mainly transmitted through Mother-To- Child Transmission (MTCT) during pregnancy, labour and delivery, or breastfeeding. This review provides an overview of the distinct therapeutic alternatives to abolish the systemic viral replication in paediatric HIV-1 infection. Numerous classes of antiretroviral agents have emerged as therapeutic tools for downregulation of different steps in the HIV replication process. These classes encompass Non- Nucleoside Analogue Reverse Transcriptase Inhibitors (NNRTIs), Nucleoside/Nucleotide Analogue Reverse Transcriptase Inhibitors (NRTIs/NtRTIs), INtegrase Inhibitors (INIs), Protease Inhibitors (PIs), and Entry Inhibitors (EIs). Co-administration of certain antiretroviral drugs with Pharmacokinetic Enhancers (PEs) may boost the effectiveness of the primary therapeutic agent. The combination of multiple antiretroviral drug regimens (Highly Active AntiRetroviral Therapy - HAART) is currently the standard therapeutic approach for HIV infection. So far, the use of HAART offers the best opportunity for prolonged and maximal viral suppression, and preservation of the immune system upon HIV infection. Still, the frequent administration of high doses of multiple drugs, their inefficient ability to reach the viral reservoirs in adequate doses, the development of drug resistance, and the lack of patient compliance compromise the complete HIV elimination. The development of nanotechnology-based drug delivery systems may enable targeted delivery of antiretroviral agents to inaccessible viral reservoir sites at therapeutic concentrations. In addition, the application of Computer-Aided Drug Design (CADD) approaches has provided valuable tools for the development of anti-HIV drug candidates with favourable pharmacodynamics and pharmacokinetic properties.


2004 ◽  
Vol 48 (1) ◽  
pp. 337-339 ◽  
Author(s):  
Yven Van Herrewege ◽  
Jo Michiels ◽  
Jens Van Roey ◽  
Katrien Fransen ◽  
Luc Kestens ◽  
...  

ABSTRACT The nonnucleoside reverse transcriptase inhibitors UC-781 and TMC120-R147681 (Dapivirine) effectively prevented human immunodeficiency virus (HIV) infection in cocultures of monocyte-derived dendritic cells and T cells, representing primary targets in sexual transmission. Both drugs had a favorable therapeutic index. A 24-h treatment with 1,000 nM UC-781 or 100 nM TMC120-R147681 prevented cell-free HIV infection, whereas 10-fold-higher concentrations blocked cell-associated HIV.


2000 ◽  
Vol 74 (22) ◽  
pp. 10269-10273 ◽  
Author(s):  
Andrew J. Leigh Brown ◽  
Heather M. Precious ◽  
Jeannette M. Whitcomb ◽  
Joseph K. Wong ◽  
Marlynne Quigg ◽  
...  

ABSTRACT Recently, significant numbers of individuals with primary human immunodeficiency virus (HIV) infection have been found to harbor viral strains with reduced susceptibility to antiretroviral drugs. In one study, HIV from 16% of such antiretroviral-naive individuals was shown to have a susceptibility to nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) between 2.5- and 10-fold lower than that of a wild-type control. Mutations in the RT domain that had previously been associated with antiretroviral resistance were not shared by these strains. We have analyzed by logistic regression 46 variable amino acid sites in RT for their effect on susceptibility and have identified two novel sites influencing susceptibility to NNRTIs: amino acids 135 and 283 in RT. Eight different combinations of amino acids at these sites were observed among these patients. These combinations showed a 14-fold range in mean susceptibility to both nevirapine and delavirdine. In vitro mutagenesis of the control strain combined with a phenotypic assay confirmed the significance of amino acid variation at these sites for susceptibility to NNRTIs.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4485
Author(s):  
Veronika R. Karpina ◽  
Svitlana S. Kovalenko ◽  
Sergiy M. Kovalenko ◽  
Oleksandr G. Drushlyak ◽  
Natalya D. Bunyatyan ◽  
...  

For the development of new and potent antimalarial drugs, we designed the virtual library with three points of randomization of novel [1,2,4]triazolo[4,3-a]pyridines bearing a sulfonamide fragment. The library of 1561 compounds has been investigated by both virtual screening and molecular docking methods using falcipain-2 as a target enzyme. 25 chosen hits were synthesized and evaluated for their antimalarial activity in vitro against Plasmodium falciparum. 3-Ethyl-N-(3-fluorobenzyl)-N-(4-methoxyphenyl)-[1,2,4]triazolo[4,3-a]pyridine-6-sulfonamide and 2-(3-chlorobenzyl)-8-(piperidin-1-ylsulfonyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one showed in vitro good antimalarial activity with inhibitory concentration IC50 = 2.24 and 4.98 μM, respectively. This new series of compounds may serve as a starting point for future antimalarial drug discovery programs.


2020 ◽  
Vol 10 (4) ◽  
pp. 769-774
Author(s):  
D. P. Zyryanova ◽  
N. V. Bogacheva ◽  
A. V. Totmenin ◽  
N. M. Gashnikova

Highly active antiretroviral therapy (HAART) allows not only to control the infection process in certain patient, but also to reduce a risk of HIV infection spreading in general, so that one of the goals for international community fighting against HIV-spread is to maximize coverage of infected subjects with HAART. Antiretroviral therapy in HIV infection is administered lifelong, so that therapeutic efficacy may be lowered due to emergence of resistant HIV-1 variants. Currently, development of new antiretroviral drugs is currently underway throughout the world, therefore standard HIV-1 models are demanded to evaluate antiviral efficacy of promising drugs. To reliably assess drug efficiency regarding Russiawide HIV-1 variants, HIV-1 genovariants widespread in Russia should be used as a virus model. A recently emerged recombinant form of CRF63_02A6 HIV-1 is spread in Russia being currently a dominant variant detected among HIV-infected individuals in an extended region of the Siberian Federal District: in the Novosibirsk, Tomsk, Omsk, Kemerovo Regions, Krasnoyarsk and Altai Krai. We have obtained CRF63_02A6 infectious isolates of HIV-1, one of which contains mutations, reducing the sensitivity to the applied inhibitors of the virus reverse transcriptase. In addition, we constructed infectious molecular clones based on HIV-1 CRF63_02A6 variants with an affinity for CCR5 coreceptors and CXCR4. Infectious isolates and molecular clones CRF63_02A6 tested as models for assessing efficacy of antiretroviral drugs using the example of the drug “Efavirenz”. The fifty percent inhibitory concentration determined on the models of HIV-1 infectious molecular clones and HIV-1 isolate 18RU7056 ranged from 0.00027 pg/ml to 0.00046 pg/ml being in agreement with data published elsewhere. Concentrations of “Efavirenz” used in the study did not suppress the replication of HIV-1 12RU6987, which is resistant to non-nucleoside reverse transcriptase inhibitors, which confirms the decrease in the sensitivity of HIV-1 12RU6987 to “Efavirenz” by no less than 10,000 times. Thus, our data demonstrate that CRF63_02A6 HIV-1 isolated strains and infectious molecular clones are relevant and complementary tools for assessing efficacy of developing drugs aimed at suppressing HIV-1, including non-nucleoside-resistant virus reverse transcriptase inhibitors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chunxiang Guo ◽  
Yaxin Wu ◽  
Yang Zhang ◽  
Xinchao Liu ◽  
Aixin Li ◽  
...  

Background: The widespread use of antiretroviral therapy (ART) has raised concerns about the emergence of HIV transmitted drug resistance (TDR). Acute HIV infection (AHI) was the most appropriate time to detect the spread of TDR. In this meta-analysis, our purpose was to evaluate the level of TDR in ART-naive patients with primary HIV infection (PHI)/AHI/early HIV infection (EHI) and to describe the critical drug-resistant mutations.Methods: We systematically searched the literature between January 1, 2008, and April 30, 2021, in PubMed, Web of Science, Embase, and the Cochrane Library. To evaluate the overall prevalence of TDR, we extracted raw data and analyzed prevalence estimates using Stata SE.Results: The data of this meta-analysis come from 12 observational studies, covering 3,558 ART-naive individuals with PHI, AHI, or EHI. The overall prevalence of HIV-TDR is 9.3% (95% CI: 6.8%–11.8%, I2 = 81.1%, in 11 studies). The prevalence of resistance by drug class is the highest for the nonnucleoside reverse transcriptase inhibitors (NNRTIs) at 5.7% (95% CI: 2.9%–8.5%, I2 = 96.6%, in 11 studies), followed by nucleoside reverse transcriptase inhibitors (NRTIs) at 3.4% (95% CI: 1.8%–5.0%, I2 = 86.3%, in 10 studies) and protease inhibitors (PIs) at 3.3% (95% CI: 2.7%–3.9%, I2 = 15.6%, in 10 studies). The prevalence of TDR to integrase inhibitors (INIs) is 0.3% (95% CI: 0.1%–0.7%, I2 = 95.9%, in three studies), which is the lowest among all antiretroviral drugs.Conclusion: The overall prevalence of TDR is at a moderate level among AHI patients who have never received ART. This emphasizes the importance of baseline drug resistance testing for public health surveillance and guiding the choice of ART. In addition, the prevalence of TDR to NNRTIs is the highest, while the TDR to INIs is the lowest. This may guide the selection of clinical antiretroviral drugs.


Sign in / Sign up

Export Citation Format

Share Document