scholarly journals Identification of Lead Compounds Targeting the Cathepsin B-Like Enzyme of Eimeria tenella

2011 ◽  
Vol 56 (3) ◽  
pp. 1190-1201 ◽  
Author(s):  
Marie Schaeffer ◽  
Joerg Schroeder ◽  
Anja R. Heckeroth ◽  
Sandra Noack ◽  
Michael Gassel ◽  
...  

ABSTRACTCysteine peptidases have been implicated in the development and pathogenesis ofEimeria. We have identified a single-copy cathepsin B-like cysteine peptidase gene in the genome database ofEimeria tenella(EtCatB). Molecular modeling of the predicted protein suggested that it differs significantly from host enzymes and could be a good drug target. EtCatB was expressed and secreted as a soluble, active, glycosylated mature enzyme fromPichia pastoris. Biochemical characterization of the recombinant enzyme confirmed that it is cathepsin B-like. Screening of a focused library against the enzyme identified three inhibitors (a nitrile, a thiosemicarbazone, and an oxazolone) that can be used as leads for novel drug discovery againstEimeria. The oxazolone scaffold is a novel cysteine peptidase inhibitor; it may thus find widespread use.

Genetics ◽  
2003 ◽  
Vol 163 (4) ◽  
pp. 1299-1313
Author(s):  
Zheng Xu ◽  
Britton Lance ◽  
Claudia Vargas ◽  
Budak Arpinar ◽  
Suchendra Bhandarkar ◽  
...  

Abstract A bioinformatics tool called ODS3 has been created for mapping by sequencing. The tool allows the creation of integrated genomic maps from genetic, physical mapping, and sequencing data and permits an integrated genome map to be stored, retrieved, viewed, and queried in a stand-alone capacity, in a client/server relationship with the Fungal Genome Database (FGDB), and as a web-browsing tool for the FGDB. In that ODS3 is programmed in Java, the tool promotes platform independence and supports export of integrated genome-mapping data in the extensible markup language (XML) for data interchange with other genome information systems. The tool ODS3 is used to create an initial integrated genome map of the AIDS-related fungal pathogen, Pneumocystis carinii. Contig dynamics would indicate that this physical map is ∼50% complete with ∼200 contigs. A total of 10 putative multigene families were found. Two of these putative families were previously characterized in P. carinii, namely the major surface glycoproteins (MSGs) and HSP70 proteins; three of these putative families (not previously characterized in P. carinii) were found to be similar to families encoding the HSP60 in Schizosaccharomyces pombe, the heat-shock Ψ protein in S. pombe, and the RNA synthetase family (i.e., MES1) in Saccharomyces cerevisiae. Physical mapping data are consistent with the 16S, 5.8S, and 26S rDNA genes being single copy in P. carinii. No other fungus outside this genus is known to have the rDNA genes in single copy.


2015 ◽  
Vol 59 (11) ◽  
pp. 6873-6881 ◽  
Author(s):  
Kathryn Winglee ◽  
Shichun Lun ◽  
Marco Pieroni ◽  
Alan Kozikowski ◽  
William Bishai

ABSTRACTDrug resistance is a major problem inMycobacterium tuberculosiscontrol, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity againstM. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independentM. tuberculosismutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations inRv2887were common to all three MP-III-71-resistant mutants, and we confirmed the role ofRv2887as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified inEscherichia colito negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation ofRv2887abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations ofRv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance ofM. tuberculosisRv2887mutants may involve efflux pump upregulation and also drug methylation.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Rashmi Gupta ◽  
Carolina Rodrigues Felix ◽  
Matthew P. Akerman ◽  
Kate J. Akerman ◽  
Cathryn A. Slabber ◽  
...  

ABSTRACTMycobacterium tuberculosisand the fast-growing speciesMycobacterium abscessusare two important human pathogens causing persistent pulmonary infections that are difficult to cure and require long treatment times. The emergence of drug-resistantM. tuberculosisstrains and the high level of intrinsic resistance ofM. abscessuscall for novel drug scaffolds that effectively target both pathogens. In this study, we evaluated the activity of bis(pyrrolide-imine) gold(III) macrocycles and chelates, originally designed as DNA intercalators capable of targeting human topoisomerase types I and II (Topo1 and Topo2), againstM. abscessusandM. tuberculosis. We identified a total of 5 noncytotoxic compounds active against both mycobacterial pathogens under replicatingin vitroconditions. We chose one of these hits, compound 14, for detailed analysis due to its potent bactericidal mode of inhibition and scalable synthesis. The clinical relevance of this compound was demonstrated by its ability to inhibit a panel of diverseM. tuberculosisandM. abscessusclinical isolates. Prompted by previous data suggesting that compound 14 may target topoisomerase/gyrase enzymes, we demonstrated that it lacked cross-resistance with fluoroquinolones, which target theM. tuberculosisgyrase.In vitroenzyme assays confirmed the potent activity of compound 14 against bacterial topoisomerase 1A (Topo1) enzymes but not gyrase. Novel scaffolds like compound 14 with potent, selective bactericidal activity againstM. tuberculosisandM. abscessusthat act on validated but underexploited targets like Topo1 represent a promising starting point for the development of novel therapeutics for infections by pathogenic mycobacteria.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Michelle J. Boyle ◽  
Mark Skidmore ◽  
Benjamin Dickerman ◽  
Lynsay Cooper ◽  
Anthony Devlin ◽  
...  

ABSTRACT Despite recent successful control efforts, malaria remains a leading global health burden. Alarmingly, resistance to current antimalarials is increasing and the development of new drug families is needed to maintain malaria control. Current antimalarials target the intraerythrocytic developmental stage of the Plasmodium falciparum life cycle. However, the invasive extracellular parasite form, the merozoite, is also an attractive target for drug development. We have previously demonstrated that heparin-like molecules, including those with low molecular weights and low anticoagulant activities, are potent and specific inhibitors of merozoite invasion and blood-stage replication. Here we tested a large panel of heparin-like molecules and sulfated polysaccharides together with various modified chemical forms for their inhibitory activity against P. falciparum merozoite invasion. We identified chemical modifications that improve inhibitory activity and identified several additional sulfated polysaccharides with strong inhibitory activity. These studies have important implications for the further development of heparin-like molecules as antimalarial drugs and for understanding merozoite invasion.


2015 ◽  
Vol 82 (4) ◽  
pp. 1004-1014 ◽  
Author(s):  
Canfang Niu ◽  
Huiying Luo ◽  
Pengjun Shi ◽  
Huoqing Huang ◽  
Yaru Wang ◽  
...  

ABSTRACTN-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases fromYersinia kristensenii(YkAPPA) andYersinia rohdei(YrAPPA), each having anN-glycosylation motif, and one pepsin-sensitive HAP phytase fromYersinia enterocolitica(YeAPPA) that lacked anN-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering theN-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed inPichia pastorisfor biochemical characterization. Compared with those of theN-glycosylation site deletion mutants andN-deglycosylated enzymes, allN-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of theN-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of theN-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced inEscherichia colibut had no effect on the pepsin resistance ofN-glycosylated enzymes produced inP. pastoris. Thus,N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin's accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation ofN-glycosylation, for improvement of phytase properties for use in animal feed.


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Lin Zeng ◽  
Robert A. Burne

ABSTRACTThe dental caries pathogenStreptococcus mutanscan ferment a variety of sugars to produce organic acids. Exposure ofS. mutansto certain nonmetabolizable carbohydrates, such as xylitol, impairs growth and can cause cell death. Recently, the presence of a sugar-phosphate stress inS. mutanswas demonstrated using a mutant lacking 1-phosphofructokinase (FruK) that accumulates fructose-1-phosphate (F-1-P). Here, we studied an operon inS. mutans,sppRA, which was highly expressed in thefruKmutant. Biochemical characterization of a recombinant SppA protein indicated that it possessed hexose-phosphate phosphohydrolase activity, with preferences for F-1-P and, to a lesser degree, fructose-6-phosphate (F-6-P). SppA activity was stimulated by Mg2+and Mn2+but inhibited by NaF. SppR, a DeoR family regulator, repressed the expression of thesppRAoperon to minimum levels in the absence of the fructose-derived metabolite F-1-P and likely also F-6-P. The accumulation of F-1-P, as a result of growth on fructose, not only inducedsppAexpression, but it significantly altered biofilm maturation through increased cell lysis and enhanced extracellular DNA release. Constitutive expression ofsppA, via a plasmid or by deletingsppR, greatly alleviated fructose-induced stress in afruKmutant, enhanced resistance to xylitol, and reversed the effects of fructose on biofilm formation. Finally, by identifying three additional putative phosphatases that are capable of promoting sugar-phosphate tolerance, we show thatS. mutansis capable of mounting a sugar-phosphate stress response by modulating the levels of certain glycolytic intermediates, functions that are interconnected with the ability of the organism to manifest key virulence behaviors.IMPORTANCEStreptococcus mutansis a major etiologic agent for dental caries, primarily due to its ability to form biofilms on the tooth surface and to convert carbohydrates into organic acids. We have discovered a two-gene operon inS. mutansthat regulates fructose metabolism by controlling the levels of fructose-1-phosphate, a potential signaling compound that affects bacterial behaviors. With fructose becoming increasingly common and abundant in the human diet, we reveal the ways that fructose may alter bacterial development, stress tolerance, and microbial ecology in the oral cavity to promote oral diseases.


2021 ◽  
Vol 10 (16) ◽  
Author(s):  
Zhenhua Yu ◽  
Sergio de los Santos-Villalobos ◽  
Yansheng Li ◽  
Jian Jin ◽  
Fannie Isela Parra Cota ◽  
...  

ABSTRACT Here, we present the draft genome of Bacillus sp. strain IGA-FME-2. This strain was isolated from the bulk soil of soybean (Glycine max L.). Its genome consists of 3,810 protein-coding genes, 44 tRNAs, two 16S rRNAs, and a single copy of 23S rRNA, with a GC content of 46.4%.


2007 ◽  
Vol 408 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Mariarita De Felice ◽  
Valentina Aria ◽  
Luca Esposito ◽  
Mariarosaria De Falco ◽  
Biagio Pucci ◽  
...  

To protect their genetic material cells adopt different mechanisms linked to DNA replication, recombination and repair. Several proteins function at the interface of these DNA transactions. In the present study, we report on the identification of a novel archaeal DNA helicase. BlastP searches of the Sulfolobus solfataricus genome database allowed us to identify an open reading frame (SSO0112, 875 amino acid residues) having sequence similarity with the human RecQ5β. The corresponding protein, termed Hel112 by us, was produced in Escherichia coli in soluble form, purified to homogeneity and characterized. Gel-filtration chromatography and glycerol-gradient sedimentation analyses revealed that Hel112 forms monomers and dimers in solution. Biochemical characterization of the two oligomeric species revealed that only the monomeric form has an ATP-dependent 3′–5′ DNA-helicase activity, whereas, unexpectedly, both the monomeric and dimeric forms possess DNA strand-annealing capability. The Hel112 monomeric form is able to unwind forked and 3′-tailed DNA structures with high efficiency, whereas it is almost inactive on blunt-ended duplexes and bubble-containing molecules. This analysis reveals that S. solfataricus Hel112 shares some enzymatic features with the RecQ-like DNA helicases and suggests potential cellular functions of this protein.


2020 ◽  
Vol 9 (30) ◽  
Author(s):  
Dhruba Bhattacharya ◽  
Sergio de los Santos Villalobos ◽  
Valeria Valenzuela Ruiz ◽  
Joseph Selvin ◽  
Joydeep Mukherjee

ABSTRACT The draft genome of Bacillus sp. SPB7, which was isolated from the marine sponge Spongia officinalis, is presented. This bacterium is a producer of an antimicrobial cyclic diketopiperazine, (3S,6S)-3,6-diisobutylpiperazine-2,5-dione. The genome consists of 4,511 protein-coding genes, 63 tRNAs, 2 16S rRNAs, 3 23S rRNAs, and a single copy of 5S rRNA.


Sign in / Sign up

Export Citation Format

Share Document